3航空公司客户价值分析
目标
将客户进行分类分群,分析对比不同客户群体的客户价值,将营销资源集中于高价值客户,实现企业利润最大化。(通过航空公司的数据识别不同价值的客户。)
3.1 数据的探索性分析
探索性分析的目的是对数据进行缺失值分析和异常值分析,分析数据的规律。
查找每列属性的最大最小值以及空值个数。代码如下:
# coding=utf-8
#数据探索分析
import pandas as pd
datafile='demo/data/air_data.csv'
resultfile='demo/tmp/explore.xls'#数据探索分析结果表
pd.set_option('display.width', 200)
data=pd.read_csv(datafile,encoding='utf-8')
explore=data.describe(percentiles=[],include='all').T#percentiles指定计算多少分位数
explore['null']=len(data)-explore['count']
explore=explore[['null','max','min']]
explore.columns=[u'空值数',u'最大值',u'最小值']#表头重命名
explore.to_excel(resultfile)
计算结果如下:
部分数据没能显示
从该表中我们可得知哪一列有缺失值,以及由多少缺