自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(43)
  • 收藏
  • 关注

原创 关于指针的那些破事

本文系统介绍了C++指针的核心概念与应用。主要内容包括:1)指针的基础知识(定义、声明与初始化);2)指针操作(解引用、算术运算);3)指针与数组、函数的交互;4)动态内存管理(malloc/free);5)高级应用(多级指针、结构体指针);6)安全问题(野指针、悬空指针)。同时对比了C++数组与JavaScript数组的特性差异,并提供了链表实现的完整示例。文章强调指针作为"双刃剑"的特性,既能提升程序性能又需谨慎使用以避免内存问题,适合作为C++指针的系统学习资料。

2025-09-20 11:18:17 1077

原创 MySQL全面教程:从基础到高级

本文提供了MySQL从入门到精通的完整指南,涵盖安装配置、基础操作和高级功能。主要内容包括:1)Windows/Linux系统下的MySQL安装方法;2)数据库和表的创建、数据增删改查操作;3)连接查询、存储过程、函数、触发器等高级功能;4)性能优化技巧如索引创建和查询优化。通过实例代码演示了各功能的具体实现,帮助读者系统掌握MySQL数据库管理技能,为实际项目开发奠定基础。

2025-08-16 10:00:52 925

原创 Python中的全局解释器锁(GIL):原理、影响与应对策略

Python全局解释器锁(GIL)是CPython解释器的核心机制,它确保同一时间只有一个线程执行字节码,简化了内存管理但限制了多线程性能。GIL对CPU密集型任务影响显著,多线程无法利用多核优势;但对多进程、协程和I/O任务影响较小。本文探讨了GIL的工作原理,通过代码示例展示了其对多线程、多进程和协程的不同影响,并提出了四种应对策略:使用多进程处理CPU任务、利用NumPy等第三方库、采用协程处理I/O任务,或选择Jython等替代解释器。这些方法能有效规避GIL限制,提升Python程序性能。

2025-08-08 08:49:47 1677

原创 Python 中的线程、进程与协程:详解与实战

本文全面介绍了Python中的多任务处理工具:线程(Thread)、进程(Process)和协程(Coroutine)。讲解了它们的基本使用方法、同步机制及适用场景:线程适合I/O密集型任务但需注意同步;进程适合CPU密集型任务可充分利用多核;协程则适合大规模I/O操作。通过多线程下载文件、多进程计算和异步爬虫三个实战案例,展示了不同工具的具体应用。最后对比了三者在资源占用和适用场景上的区别,帮助开发者根据实际需求选择合适的多任务处理方案。

2025-08-07 08:46:21 1106

原创 Python 异常处理指南:try/except 的妙用

本文介绍了Python中异常处理的核心机制try/except用法。异常处理能优雅应对程序运行中的意外情况,确保程序稳定性。文章详细讲解了try/except基本语法、捕获多种异常的方法、else/finally块的使用场景,以及自定义异常的实现。通过除零、文件操作等典型示例,展示了如何精确处理不同类型的异常。最后提出了异常处理最佳实践,包括明确异常类型、合理记录日志、避免滥用等建议,帮助开发者编写更健壮的代码。

2025-08-06 08:53:59 1244

原创 从「同步」到「异步」:用 aiohttp 把 Python 网络 I/O 榨到极致

本文探讨了Python中IO瓶颈问题及异步编程优势。通过对比同步请求、线程池和异步协程三种方案下载100张图片的性能表现,展示了aiohttp框架在并发处理上的高效性。同步方案耗时22秒,20线程池降至2.7秒,而异步方案仅需2.4秒且内存占用更低。文章详细解析了aiohttp客户端/服务端实现,包括连接控制、错误处理和流量限制等关键点,并对比了同步与异步的心智模型差异。最后给出实践建议:aiohttp适合高并发网络IO场景,但不适用于CPU密集型任务。异步编程的核心价值在于最大化利用CPU资源,将等待时间

2025-08-05 15:11:27 1237 1

原创 走进 Python 异步世界:asyncio 从入门到实战

“异步”是 Python 进阶路上绕不开的关键词。它能让单线程程序同时处理成千上万个 I/O 任务,显著提升吞吐量,却不会增加 CPU 负担。asyncio 是官方提供的核心库,从 3.4 版本走到今天,语法几经更迭,终于在 3.7 之后趋于稳定。本文用 20 行左右的完整示例串起核心概念,带你无痛掌握事件循环、协程、任务、并发限制、异常聚合等关键知识点

2025-08-04 15:08:50 1289

原创 Python 深入 re 模块

本文系统介绍了Python正则表达式的核心用法与实战技巧。文章首先概述re模块的关键API,强调预编译、具名分组等最佳实践。随后通过20个典型案例,包括手机号校验、日志解析、敏感词过滤等场景,详细讲解不同正则模式的实现方法。文章还总结了常见陷阱(如贪婪匹配、回溯问题)和性能优化建议,并对比了标准库与第三方库的适用场景。最后提供了正则表达式调试工具和学习资源,帮助开发者高效处理文本匹配任务。

2025-08-03 19:12:34 970

原创 Python 深入 pygame模块

这篇文章介绍了如何使用Python的Pygame库开发一个简单的像素跑酷游戏。主要内容包括:Pygame的轻量级优势与核心概念,20行代码的最小游戏骨架构建,游戏设计说明(玩家、地面、障碍物等核心对象),完整代码的逐段解析(常量、玩家类、地面与障碍物类、游戏主循环),以及运行方式和扩展建议(添加音效、动画等)。文章还提供了性能优化和发布技巧,并强调Pygame作为"手动挡"游戏开发工具的学习价值,是理解游戏开发底层原理的良好起点。

2025-08-02 08:53:23 1222

原创 Python 抽象类全景指南:从 ABC 到真实世界的优雅落地

本文介绍了Python中抽象类(ABC)的核心概念与应用场景。文章首先阐述了抽象在大型项目中的必要性,它能解决动态语言缺乏类型约束的问题。随后详细讲解了abc模块的三个核心工具:ABCMeta元类、@abstractmethod装饰器及相关辅助工具。通过可序列化协议、支付通道等示例,展示了如何定义抽象类并实现具体子类,包括属性抽象、方法抽象和状态管理。文章还探讨了抽象类与类型注解的联动、真实项目中的ORM分层设计,以及抽象属性和缓存实现。最后总结了常见误区和最佳实践,指出抽象类适用于框架层契约、业务层解耦和

2025-08-01 08:41:13 1428

原创 Python 元类与原始函数:从“黑魔法”到“白盒工程”的完整漫游

元类是“类的类”,让你有机会在类尚未诞生时就写下“律法”;原始函数是“函数的本体”,让你可以在运行期透视、拆解、重组。从类型校验到迷你 ORM,从 RPC 路由到依赖注入,背后都跳动着元类与原始函数的脉搏。希望本文的示例能成为你工具箱里的“瑞士军刀”,在下一个需要“造轮子”的夜晚,为你点亮一盏灯。

2025-07-31 08:42:41 900

原创 一口气讲透 Python “三器”:Iterable、Iterator、Generator 的血缘与江湖

本文系统讲解了Python中Iterable(可迭代对象)、Iterator(迭代器)和Generator(生成器)的区别与联系。通过"箱子、吸管与魔法吸管"的生动比喻,阐明Iterable是数据容器(如列表),Iterator是访问数据的游标(需实现__next__),而Generator则是用yield自动创建的迭代器,支持惰性计算。文章包含具体代码示例,展示如何自定义可迭代对象、实现迭代器协议以及编写生成器函数,并指出常见误区(如列表不是迭代器)。最后总结三者关系:所有Genera

2025-07-30 15:59:14 1149

原创 python中的hasattr ,getattr,setattr, delattr

在 Python 里,“对象”不是冰冷的结构体,而是可以被随时探测、装扮、改装、抹除的生命体。这四兄弟用最朴素的 API,把元编程的大门开了一条缝

2025-07-29 10:17:23 927

原创 Python 正则表达式完全指南:从入门到实战

先用自然语言描述模式,再翻译成正则。任何复杂正则都必须有自动化测试。

2025-07-28 08:43:54 1473

原创 Python 魔法函数完全指南:从 getitem 到 enter 的 15 个实战场景

魔法函数不是炫技,而是 协议。

2025-07-27 17:42:29 1171

原创 Python深入 Tkinter 模块

本文介绍了使用Python内置Tkinter库开发轻量级GUI应用的方法。Tkinter无需额外安装,跨平台兼容,适合快速交付简单工具。文章从基础示例开始,讲解三种布局方式(pack/grid/place)和事件绑定,通过秒表和批量文件重命名两个案例展示实际应用。还介绍了界面美化技巧(ttk主题引擎)和PyInstaller打包方法,解决图片路径、多线程等常见问题。Tkinter虽然界面朴素,但在"脚本即应用"的场景中具有独特优势,200行代码即可实现实用工具开发,适合快速交付简单生产力

2025-07-26 17:40:46 1516

原创 Python math 模块全景漫游与实战指南

本文深入解析Python标准库中的math模块,全面介绍其50多个实用函数。从基本数学常量(π、e)到高级数学运算(取整、对数、三角函数),再到特殊函数(阶乘、组合数、伽马函数),涵盖了数值计算的方方面面。文章特别强调实际应用场景,如金融计算中的复利公式、地理距离计算、2D图形旋转等,并对比了math与NumPy的性能差异。同时指出了常见的使用陷阱和精度问题,提供了高效调试技巧。作为Python与C数学库的轻量级桥梁,math模块在脚本、算法竞赛和嵌入式开发中都能发挥重要作用。

2025-07-25 08:40:52 1111

原创 Python logging 模块从入门到生产实战

logging 模块的 API 设计遵循“最小惊讶原则”——简单场景三行代码,复杂需求也能层层组装。把本文示例复制到你的项目,逐步替换掉所有 print,再为关键业务加上结构化 JSON 日志,你就拥有了可观测、可告警、可回溯的生产级日志体系。记住:日志不是开发的负担,而是系统运行的氧气。

2025-07-24 08:46:50 954

原创 把“对象”讲清楚——写给 Python 初学者的面向对象基础全攻略

本文系统介绍了Python面向对象编程(OOP)的核心概念与应用。从类和对象的基本定义开始,详细讲解了属性与行为的封装、继承与多态的实现、私有属性的控制(@property)以及魔法方法(str、__len__等)的使用。通过"猫咪收容所"的完整案例,展示了如何将类属性、实例方法、类方法和静态方法结合运用。文章强调OOP能有效组织代码,提高复用性和可维护性,使程序更贴近现实世界的思维模型。掌握这些基础概念后,开发者可以编写出更优雅、更Pythonic的代码。

2025-07-23 09:13:37 1309

原创 Python 类(class)从入门到进阶:语法、思想与最佳实践

本文介绍了Python中类的核心概念与使用场景。类通过封装数据与操作成对象,解决了传统函数式编程中数据分散的问题。文章详细讲解了类属性与实例属性的区别、三种方法类型(实例/类/静态方法)、私有属性约定、property装饰器、魔术方法等核心语法。同时提供了继承、dataclass、单例模式等进阶技巧,并通过一个回合制战斗系统的实战案例展示类的组合运用。最后给出最佳实践建议:优先使用组合而非继承,合理利用语法糖,保持代码简洁可维护。掌握这些要点可以帮助开发者编写更优雅的Python面向对象代码。

2025-07-22 08:40:21 1136

原创 Python 中的装饰器:从新手到熟练掌握

Python装饰器是一种动态修改函数或类行为的强大工具,通过@语法糖实现。文章从基础概念入手,介绍了简单装饰器、带参数装饰器的实现方式,以及多层装饰器的应用顺序。重点展示了装饰器在日志记录、性能测试和权限校验等实际场景中的应用,并延伸讲解了类装饰器和装饰器工厂等高级用法。装饰器能有效增强代码功能而不修改原实现,但需注意复杂性和性能影响。掌握装饰器有助于提升代码的可维护性和扩展性。

2025-07-21 08:45:42 1619

原创 Python 中的闭包:原理、应用与实践

本文深入探讨了Python中的闭包特性,介绍其核心概念、基本结构及应用场景。闭包允许嵌套函数访问外部函数变量,即使外部函数已返回,适用于函数式编程、装饰器和回调函数等场景。文章通过代码示例演示了闭包的实际应用,包括动态生成函数、状态保持等实用技巧,同时提醒开发者注意变量绑定时机和内存管理问题。掌握闭包有助于编写更灵活、可维护的Python代码。

2025-07-20 10:30:54 1058 1

原创 Python 中的深拷贝、浅拷贝与等号赋值:理解对象复制的本质

本文详细解析了Python中对象复制的三种方式:等号赋值、浅拷贝和深拷贝。等号赋值只是创建变量别名,不生成新对象;浅拷贝(copy.copy())创建新对象但只复制第一层内容;深拷贝(copy.deepcopy())会递归复制所有嵌套对象。文章通过实例演示了不同方式对可变/不可变对象的影响,对比了性能差异,并给出了适用场景建议:简单引用用等号、仅需第一层复制用浅拷贝、需要完全独立副本用深拷贝。掌握这些区别有助于开发者根据实际需求选择合适的复制方式。

2025-07-19 08:45:31 1314

原创 Python 中的变量作用域:深入理解与实践

本文详细介绍了Python中的变量作用域概念,包括全局、局部、嵌套和内置作用域。通过LEGB规则解释变量查找顺序,并演示了global和nonlocal关键字的使用方法。文章通过具体代码示例,展示了不同作用域下变量的访问和修改规则,特别说明了闭包特性以及全局变量在模块间的共享机制。这些内容帮助开发者正确理解变量作用域,避免常见错误,提升代码质量和可维护性。

2025-07-18 08:42:14 1064

原创 把 Python 对象装进时间胶囊——彻底吃透 pickle 的 dump、dumps、load、loads

本文深入讲解 Python pickle 模块的四大核心方法:dump 把对象写入文件,dumps 把对象转为字节流,load 从文件还原,loads 从字节串重生。通过缓存爬虫结果、持久化机器学习模型等实例,演示二进制落盘与内存传输的典型用法,并给出协议选择、安全校验、跨版本兼容等最佳实践,助你安全高效地把任何 Python 对象装进文件。

2025-07-17 08:45:02 1519

原创 Python 中 os 与 sys 模块的交响协奏——让脚本与“世界”对话

文章以守护进程为例,展示 os 负责文件路径、环境变量、进程管理,sys 掌管命令行、模块路径、标准流重定向。二者协同实现跨平台日志、热插拔插件与后台服务:os 提供系统级接口,sys 暴露解释器入口,组合后脚本可在任何机器优雅运行。

2025-07-16 08:48:47 1411

原创 Python 函数的维护性与复用性

文章以销售额提取脚本为例,展示如何让 Python 函数从一次性脚本演进为可维护、可复用的组件。核心路径:先把硬编码改成参数化,再把读、滤、写拆成单一职责的小函数;随后用协议抽象数据源、Pydantic 外部化配置、装饰器统一异常与日志,并辅以轻量测试。最终函数像乐高一样可插拔、可组合,任何需求变更只需调整配置或拼装顺序,而无需深入实现细节。

2025-07-15 15:38:50 882

原创 python的函数全景课:从“为什么要有函数”到“匿名函数”的一次通透之旅

函数是编程中的可复用模块,通过封装重复逻辑提高代码效率。Python函数使用def定义,形参支持位置参数、默认值和可变长度参数。调用时可通过位置或关键字传递实参,返回值用return传递。类型提示虽不强制但能提升可读性,匿名函数lambda适用于简单操作。函数思维将复杂任务拆解为独立单元,通过组合实现代码复用与弹性扩展,最终构建出模块化、易维护的程序结构。

2025-07-15 08:39:32 812

原创 从 JSON 到 Python 对象:一次通透的序列化与反序列化之旅

本文介绍了Python中JSON模块的使用方法。JSON作为跨语言的纯文本数据格式,在程序间数据交换中扮演重要角色。文章重点讲解了json.dumps()和json.loads()的核心用法,以及文件级操作的dump()和load()方法。通过实例展示了如何控制输出格式、处理特殊数据类型、优化性能等进阶技巧,并对比了JSON与其他序列化方案的优劣。最后强调合理选择数据格式应兼顾可读性、兼容性和性能。掌握这些JSON处理技巧,能有效提升数据持久化和传输的效率。

2025-07-14 21:39:49 902

原创 Python 文件读写全景指南:从“打开”到“优雅退出”的全过程实战

文件读写表面看是“把数据搬进搬出”,实则涉及编码、缓冲、并发、压缩、序列化、路径、权限、性能等多维度考量。

2025-07-14 11:23:20 1118

原创 Python 四大常用模块深度指南:json、datetime、random、turtle从入门到实战,一文吃透!

本文介绍了Python四大实用标准库:json用于数据序列化与网络传输,datetime处理时间计算与格式化,random生成随机数和模拟概率,turtle实现图形绘制与可视化。通过具体代码示例,展示了各模块的核心功能:json保存配置、datetime计算时间差、random生成验证码、turtle绘制六芒星和分形树等。最后通过一个综合项目,将四个模块结合使用,完成温度数据生成、存储和可视化。这些标准库覆盖了80%的日常开发需求,体现了Python"内置电池"的设计哲学.

2025-07-12 14:55:11 1109

原创 Python 四大内置容器(list / tuple / dict / set)方法全景图:从入门到进阶的场景实战

列表、元组、字典、集合是 Python 世界里的“四大名捕”。它们各有脾气,却又协同作战。本文以「功能 → 方法 → 场景」为主线,用 20 余段可直接复制运行的代码,带你一次性吃透它们最常用的 API。全文约 2000 字,读完即可把官方文档「常用方法」章节撕下来当草稿纸。

2025-07-12 09:06:59 578

原创 Python 中的集合(set):从入门到实战的完全指南

集合 set├── 创建:{1,2,3} / set() / 推导式├── 操作:增add 删discard 查in├── 运算:交& 并| 差- 对称差^├── 性能:O(1) 查找 / O(n) 遍历└── 进阶:frozenset 可哈希。

2025-07-11 19:03:33 1801

原创 Python中字典的操作

在Python编程语言中,字典(Dictionary)是一种非常重要的数据结构,它是一种映射类型,可以存储键值对(key-value pairs)。字典在Python开发中应用广泛,掌握其操作对于编写高效、灵活的代码至关重要。本文将详细介绍Python中字典的基本操作,并通过示例代码帮助读者更好地理解和掌握。

2025-07-11 08:47:34 454

原创 Python中列表与元组的操作

在Python编程语言中,列表(List)和元组(Tuple)是两种常用的数据结构,它们都是序列类型,可以存储多个元素。列表是可变的,而元组是不可变的。本文将详细介绍列表和元组的基本操作,并通过示例代码帮助读者更好地理解和掌握。

2025-07-10 20:42:10 594

原创 Python中字符串的操作

字符串是Python中最常用的数据类型之一,掌握字符串操作对于编写高效、优雅的Python代码至关重要。

2025-07-08 17:49:34 661 5

原创 Python 中的循环

Python 中的循环:for、while、break、continue 与循环中的 else。在 Python 中,循环是控制程序流程的重要结构之一。它允许我们重复执行一段代码,直到满足特定条件为止。for循环和while循环。此外,break和continue语句可以用来控制循环的执行流程,而else语句则可以与循环配合使用,实现一些特殊的逻辑。本文将详细介绍这些循环相关的内容,并通过代码示例帮助你更好地理解。Python 中的循环结构功能强大且灵活,for循环适用于遍历可迭代对象,while。

2025-07-07 18:21:15 945

原创 Python 中的 for 循环的基础与应用

在 Python 编程中,for 循环是一种非常强大且常用的控制流工具,用于遍历序列(如列表、元组、字符串等)或其他可迭代对象。它可以帮助我们高效地处理数据集合,执行重复任务,而无需手动编写冗长的代码。本文将详细介绍 Python 中 for 循环的基本语法、常见用法以及一些实用的例子。

2025-07-04 21:20:39 797

原创 Python虚拟环境与真实环境以及PIP基础使用

通过以上对 Python 虚拟环境与真实环境的介绍以及 PIP 基础使用讲解和实例验证,希望能帮助你更好地理解和运用这些知识,提升 Python 开发效率和环境管理水平。

2025-07-03 20:51:27 1177

原创 Python中的分支结构

在 Python 编程的世界里,分支结构如同现实中的道路岔口,根据不同的条件引导程序流向不同的执行路径。它是构建复杂逻辑、实现智能决策的关键所在。本文将带你全面了解 Python 的分支结构,从基础语法到实际应用,让你轻松掌握这一重要编程要素。分支结构,顾名思义,就是让程序根据设定的条件进行判断,从而选择不同的执行分支。它使得程序能够根据不同的输入或状态展现出不同的行为,极大地增强了程序的灵活性和功能性。if语句:用于单分支判断,当满足条件时执行相应的代码块。if-else语句。

2025-07-03 08:54:16 1394

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除