13、WebLogic 事务与 JNDI 编程全解析

WebLogic事务与JNDI编程详解

WebLogic 事务与 JNDI 编程全解析

1. WebLogic 数据库事务编程

在分布式计算系统中,事务是维护数据完整性的重要工具。下面我们将详细介绍如何使用 WebLogic 进行数据库事务编程,以及如何实现分布式事务。

1.1 insertEmp 方法分析

insertEmp 方法用于向 EMP 表中插入员工记录。它可以不接收 JTS 启用的连接作为输入参数,而是通过调用 getJTSConnection 方法获取自己的 JTS 启用的连接到 OraclePool 。这是因为 JTS 驱动的工作方式:一旦线程针对池化连接发起事务,JTS 驱动会确保在事务提交或回滚之前,为该线程针对同一池的所有后续连接请求提供相同的连接。

public static void insertEmp(Connection theConnection,
               int empNo,
               String empName,
               String empJob)
               throws SQLException {
 // Define a SQL statement to insert an employee into EMP
 String sql = "INSERT INTO EMP (EMPNO, ENAME, JOB) " +
        "VALUES (?, ?, ?)";
 // Bind t
内容概要:本文介绍了一种基于群稀疏正则化的心电图(ECG)基线估计去噪方法,并提供了完整的Matlab实现代码。该方法利用群稀疏性先验知识,有效分离ECG信号中的基线漂移、噪声成分真实生理信号,提升信号质量。通过构建优化模型并引入群稀疏正则项,增强了对连续时间段内结构化稀疏特征的刻画能力,从而实现更精确的基线估计去噪效果。文中详细阐述了算法原理、数学建模过程及参数设置,并验证了其在真实或模拟ECG数据上的有效性鲁棒性。; 适合人群:生物医学工程、信号处理、电子工程等相关专业的研究生、科【心电图基线估计和去噪方法的群稀疏正则化】带有群稀疏正则化的心电图基线估计和去噪(Matlab实现)研人员及具备Matlab编程基础的开发者;熟悉信号去噪稀疏表示理论的技术人员更为适宜; 使用场景及目标:①用于心电图信号预处理,去除基线漂移和噪声干扰,提高后续特征提取疾病诊断准确性;②作为学术研究参考,复现论文算法或进一步改进群稀疏模型;③应用于可穿戴设备、远程监护系统中的实时ECG信号处理; 阅读建议:建议结合Matlab代码逐段理解算法实现流程,重点关注正则化项构造、优化求解过程及参数调优策略;推荐使用公开ECG数据库(如MIT-BIH)进行算法验证对比实验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值