机器学习
文章平均质量分 96
让机器学习
懒猫gg
我很懒!
展开
-
深度学习之循环神经网络
卷积神经网络CNN在图象处理领域起到了重要的作用,在自然语言处理中还要看循环神经网络RNN,RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息.原创 2024-02-06 11:01:34 · 1763 阅读 · 0 评论 -
深度学习之卷积神经网络
如果我们采用多层BP神经网络去训练1000x1000像素的图像,有1百万个隐层神经元,那么他们全连接的话,就有101210^{12}1012个连接,也就是101210^{12}1012个权值参数。这训练量是很惊人的.卷积神经网络使用权值共享网络结构,降低了网络模型的复杂度,减少了权值的数量。原创 2024-01-30 17:47:36 · 1264 阅读 · 0 评论 -
人工神经网络之求解数学问题
针对某类问题,人们常常能够从数学上提出相应的解决思路。但由于问题的复杂性和不确定性,描述解决思路的数学方程往往难以求解。基于求解问题的数学原理,可在原理性方法的指导下构造出相应的神经网络模型,使其通过对样本的学习自动实现问题的求解。原创 2024-01-21 13:09:42 · 996 阅读 · 0 评论 -
神经网络之深度学习DBN
人工神经网络(Artificial Neural Network,ANN),通常简称为神经网络,是一种在生物神经网络的启示下建立的数据处理模型。神经网络由大量的人工神经元相互连接进行计算,根据外界的信息改变自身的结构,主要通过调整神经元之间的权值来对输入的数据进行建模,最终具备解决实际问题的能力.人类自身就是一个极好的模式识别系统。人类大脑包含的神经元数量达到101110^{11}1011数量级,其处理速度比当今最快的计算机还要快许多倍。如此庞大、复杂、非线性的计算系统时刻指挥着全身的获得。原创 2023-12-29 16:12:56 · 1121 阅读 · 0 评论 -
机器学习-聚类问题
聚类算法又叫做”无监督分类“,目标是通过对无标记训练样本来揭示数据的内在性质及 规律,为进一步的数据分析提供基础。原创 2023-12-08 17:02:19 · 381 阅读 · 0 评论 -
机器学习-分类问题
机器学习-回归问题》知道了回归问题的处理方式,分类问题才是机器学习的重点.从数据角度讲,回归问题可以转换为分类问题的微分。原创 2023-12-08 15:02:09 · 526 阅读 · 0 评论 -
机器学习-回归问题(Regression)
与预测的输出为离散型不同. 在机器学习中,回归任务是用于预测连续数值型变量的任务。回归任务在很多领域都有着广泛的应用.原创 2023-12-03 14:26:26 · 606 阅读 · 0 评论 -
什么是机器学习
机器学习(Machine Learning, ML)是一个总称,用于解决由各位程序员自己基于 if-else 等规则开发算法而导致成本过高的问题,想要通过帮助机器 「发现」 它们 「自己」 解决问题的算法来解决 ,而不需要程序员将所有规则都输入机器,明确告诉机器该怎么做。原创 2023-11-24 11:05:44 · 1400 阅读 · 1 评论