Python
文章平均质量分 59
圆滚熊
拨开乌云见晴天。。。
展开
-
用labelme自己标注的数据转tusimple格式数据集
用labelme自己标注的数据转tusimple格式数据集原创 2022-08-20 09:00:00 · 1555 阅读 · 5 评论 -
keras简单神经网络搭建并训练测试
通过Keras搭建简单的神经网络,这里以minist数据集为例,测试手写字体训练效果。搭建网络训练网络测试网络原创 2021-08-29 11:50:18 · 1303 阅读 · 2 评论 -
OpenCV目标跟踪之简单质心跟踪
1.质心跟踪算法工作原理获取到待跟踪目标的边界框计算质心分配ID计算新质心与现有对象质心之间的距离(欧几里得距离)原创 2019-12-25 22:04:55 · 4170 阅读 · 6 评论 -
OCR模板匹配识别银行卡号
利用ocr实现模板匹配原创 2019-12-14 17:05:55 · 1090 阅读 · 0 评论 -
神经网络之MNIST数据集和CIFAR-10数据集训练
环境:pycharm + win10 + conda3 + python3.61.构建前馈神经网络训练MNIST首先创建一个神经网络类NeuralNetwork:import numpy as np#定义一个神经网络类class NeuralNetwork: #初始化参数 def __init__(self,layers,alpha=0.1): self....原创 2019-12-09 14:30:17 · 3695 阅读 · 0 评论 -
MobileNet-SSD + imagezmq部署树莓派搭建监控系统
Reference:https://github.com/jeffbass/imagezmqhttps://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/https://arxiv.org/abs/1704.04861https://github.com/c...原创 2019-11-25 10:14:29 · 2635 阅读 · 5 评论 -
图像搜索引擎搭建:利用VP-Tree实现以图搜图
用一张图像,从图像数据库中快速找到相似或者相同的图像,这就是以图搜图。1. VP-Tree结构1.1 概念VP-Tree(Vantage Point Tree)在1991年被Uhlmann作者提出,它是一种基于距离的度量空间上的索引结构,是一颗度量二叉树。其基本思想是将 二分查找 用于只有距离信息的多维度量空间中。也就是采用特征空间的目标点集的点与 制高点(Vantage Point) 之间...原创 2019-11-04 16:31:51 · 3093 阅读 · 3 评论 -
AttributeError: module 'cv2.cv2' has no attribute 'accumlateWeighted'
环境是:Python 3.6opencv-python-3.4.4.19缺少了一个安装包解决办法:1.补一个包 opencv-contrib-pythonpip3 install opencv-contrib-pythonCollecting opencv-contrib-pythonDownloading https://pypi.tuna.tsinghua.edu.cn/pa...原创 2019-09-12 14:50:14 · 622 阅读 · 1 评论 -
深度学习之数据增强(Python版)
深度学习之数据增强对于深度学习拿到数据时,有时候样本数据太少,这时候就需要增加数据,可以利用数据增强来做,数据增强可以有效减少过拟合,更好地使模型适用于新的样本,目的是增强模型的泛化能力。如何进行数据增强?比如拿到一张图片,可以通过随机裁剪,旋转、缩放和水平翻转等操作来生成多张相似的图像,这样样本就增加了。具体操作代码import numpy as npfrom keras.prepro...原创 2019-08-29 17:22:11 · 10470 阅读 · 5 评论 -
卷积神经网络图像尺寸预处理-----图像裁剪
卷积神经网络图像尺寸预处理-----图像裁剪(保持纵横比)在全卷积网络(FCN)中可以输入任意大小的图像尺寸,但卷积网络(CNN)中就不是这样了,在CNN是有卷积层和全连接层。首先我们知道卷积层对输入的图像尺寸是没有限制的,而全连接层就对输入的图像像有要求了。因为全连接层输入向量的维数对应其层的神经元个数,如果输入向量的维数不固定,那么全链接的权值参数的数量也是不固定的,这样网络就是变化的,无法...原创 2019-09-10 09:31:52 · 19709 阅读 · 16 评论