2018.6清北学堂day5下午(计数)

2 篇文章 0 订阅

整数划分问题

1>将n划分为若干正整数之和的划分数
2>将n划分成k个正整数之和的划分数
3>将n划分成最大数不超过k的划分数
4>将n划分成若干奇正整数之和的划分数
5>将n划分成若干不同整数之和的划分数

f[n][k]=f[n-1][k-1]+[n-k][k]

Burnside & Polya

群:一堆元素,一个运算,满足封闭性,结合律,幺元存在唯一,逆元存在唯一

幺元:单位元,满足群里面任何一个元素对幺元进行群的运算,还是他本身的

Burnside B u r n s i d e 引理

G为X的置换群, Cp C ( p ) X X 中满足在p作用下着色不变的着色集大小,
Cp C ( p )

ans=1|G|i=1|G|(C(pi)) a n s = 1 | G | ∑ i = 1 | G | ( C ( p i ) )

|G| | G | 表示置换的数目

Polya P o l y a 定理

Polya P o l y a 定理为计算 C(p) C ( p ) 提供了一种方法
Polya P o l y a 定理告诉我们 C(p)=kp C ( p ) = k p ′
(一共 k k 种颜色)

生成函数

泰勒展开
(在某个点附近)把一个函数展开成一个无限的多项式

QwQ我们会的泰勒展开,等比求和
i=0infxi=11x

貌似不关心收敛性

广义牛顿二项式定理

(x+y)n=k=0infC(n,k)xnkyk ( x + y ) n = ∑ k = 0 i n f C ( n , k ) x n − k y k

其中 C(n,k)=ki=1(ni+1)/i C ( n , k ) = ∏ i = 1 k ( n − i + 1 ) / i

其中n对于分数,负数都对

形式幂级数

对于一个序列 ai a i ,可以定义一个多项式 A(x)=infi=0aixi A ( x ) = ∑ i = 0 i n f a i x i
这个叫做原序列的生成函数,是一个形式幂级数。

example e x a m p l e
1,1,111x 1 , 1 , 1 ⋯ 1 1 − x
1,0,0,...1,0,11xm 1 , 0 , 0 , . . .1 , 0 , ⋯ 1 1 − x m
1,2,31(1x)2 1 , 2 , 3 ⋯ 1 ( 1 − x ) 2
1,2,4,6112x 1 , 2 , 4 , 6 ⋯ 1 1 − 2 x

生成函数的计算
生成函数整体可以做多项式运算。(无论用封闭形式还是用多项式形式)生成函数的乘法相当于做两个集合的组合

解递推式
比如斐波那契
可以结合FFT

直接指数型生成函数

(ex)3(ex+ex21)2 ( e x ) 3 ( e x + e − x 2 − 1 ) 2

对于序列 ai a i ,定义生成函数 infi=0aii!xi ∑ i = 0 i n f a i i ! x i

这样 1,1,1,1, 1 , 1 , 1 , 1 , ⋯ 对于 ex e x

剩下的 弃疗了

简单的反演

积性函数
if(gcd(a,b))==1f(ab)=f(a)f(b) i f ( g c d ( a , b ) ) == 1 且 f ( a b ) = f ( a ) f ( b )

狄利克雷卷积是一种对整数数论函数用约数关系进行的特殊的卷积

(fg)(N)=f(N)g(N) ( f ∗ g ) ( N ) = f ( N ) ∗ g ( N )
(f×g)(N)=d|nf(d)g(Nd) ( f × g ) ( N ) = ∑ d | n f ( d ) g ( N d )

如果 f,g f , g 为积性,那么 fg,f×g f ∗ g , f × g 都是积性

其中卷积记为 × ×

几个等式
f=f×e f = f × e
id=ϕ×1 i d = ϕ × 1
e=μ×1 e = μ × 1

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值