hdu3507 斜率优化学习笔记

QWQ菜的真实。

首先来看这个题。
很显然能得到一个朴素的 d p dp dp柿子

d p [ i ] = m a x ( d p [ i ] , d p [ j ] + ( s u m [ i ] − s u m [ j ] ) 2 ) dp[i]=max(dp[i],dp[j]+(sum[i]-sum[j])^2) dp[i]=max(dp[i],dp[j]+(sum[i]sum[j])2)

但是因为 n ≤ 500000 n\le 500000 n500000,所以 n 2 n^2 n2一定是过不了的。
考虑应该怎么优化。

考虑什么时候存在一个 j > k 且 j 比 k 更 优 秀 j>k且j比k更优秀 j>kjk

d p [ j ] + ( s u m [ i ] − s u m [ j ] ) 2 &lt; d p [ k ] + ( s u m [ i ] − s u m [ k ] ) 2 dp[j]+(sum[i]-sum[j])^2&lt;dp[k]+(sum[i]-sum[k])^2 dp[j]+(sum[i]sum[j])2<dp[k]+(sum[i]sum[k])2

我们进行化简
2 × s [ i ] × ( s [ j ] − s [ k ] ) &gt; d p [ j ] + s u m [ j ] 2 − d p [ k ] − s u m [ k ] 2 2\times s[i] \times (s[j]-s[k]) &gt; dp[j]+sum[j]^2-dp[k]-sum[k]^2 2×s[i]×(s[j]s[k])>dp[j]+sum[j]2dp[k]sum[k]2

由于权值都是正数,所以 s [ j ] − s [ k ] &gt; 0 s[j]-s[k]&gt;0 s[j]s[k]>0
我们设 f [ x ] = s u m [ x ] 2 + d p [ x ] f[x]=sum[x]^2+dp[x] f[x]=sum[x]2+dp[x]
则上述柿子等于 2 × s [ i ] &gt; f [ j ] − f [ k ] s [ j ] − s [ k ] 2\times s[i]&gt;\frac{f[j]-f[k]}{s[j]-s[k]} 2×s[i]>s[j]s[k]f[j]f[k]

观察到右边这个柿子是一个斜率的形式。
我们可以直接用单调队列维护一个下凸壳。

对于每次插入一个点,运用叉积进行 c h e c k check check,保证斜率是单调不降的。

int chacheng(Point x,Point y)
{
	return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
	Point x,y;
	x.x=(k.x-i.x);
	x.y=(k.y-i.y);
	y.x=(k.x-j.x);
	y.y=(k.y-j.y);
	if (chacheng(x,y)<=0) return true; 
	return false;
	// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
	//return false;
}
void push(Point x)
{
	while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
	q[++tail]=x;
}

删除的话,只需要通过上面那个柿子,若存在 q [ h e a d + 1 ] 比 q [ h e a d ] q[head+1]比q[head] q[head+1]q[head]优秀,就弹出队首元素

void pop(int lim)
{
	while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}

剩下的就是 d p dp dp部分

qwq因为一些奇奇怪怪的问题 W A WA WA了一上午
xtbl

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
  int x=0,f=1;char ch=getchar();
  while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
  while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
  return x*f;
}
const int maxn = 1e6+1e2;
struct Point{
	int x,y;
};
Point q[maxn];
int dp[maxn];
int sum[maxn];
int val[maxn];
int n,m;
int head=1,tail=0;
int chacheng(Point x,Point y)
{
	return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
	Point x,y;
	x.x=(k.x-i.x);
	x.y=(k.y-i.y);
	y.x=(k.x-j.x);
	y.y=(k.y-j.y);
	if (chacheng(x,y)<=0) return true; 
	return false;
	// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
	//return false;
}
void push(Point x)
{
	while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
	q[++tail]=x;
}
void pop(int lim)
{
	while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}
signed main()
{
  while (scanf("%lld%lld",&n,&m)!=EOF)
  {
  	memset(q,0,sizeof(q));
  	memset(dp,0,sizeof(dp)); 
  	memset(sum,0,sizeof(sum));
  	head=1,tail=0;
  	//n=read();m=read();
  	for (int i=1;i<=n;i++) val[i]=read();
  	for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
 	dp[0]=0;
  	push((Point){0,0});
  	for (int i=1;i<=n;i++)
  	{
  	 	pop(2ll*sum[i]);
  	 	dp[i]=q[head].y-q[head].x*q[head].x+m+(sum[i]-q[head].x)*(sum[i]-q[head].x);
  	 	push((Point){sum[i],dp[i]+sum[i]*sum[i]});
  	 //cout<<i<<" "<<dp[i]<<" "<<q[head].x<<" "<<q[head].y<<" "<<head<<" "<<tail<<endl;
  	}
  	cout<<dp[n]<<"\n";
  }
  return 0;
}

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值