一道神仙好题。
首先看到有多组 k k k,第一反应就是离线。
考虑贪心。
我们每次一定是尽量选择有儿子的节点。以便于我们下一次扩展。
但是对于一个
k
k
k,每次贪心的复杂度是
O
(
n
)
O(n)
O(n)
总复杂度是
O
(
n
q
)
O(nq)
O(nq),肯定过不了。
qwq
那我们只能来考虑一个快速求一个
k
k
k的答案。
感觉题解的柿子好神仙啊。
这里定义
f
[
i
]
f[i]
f[i]表示
k
=
i
k=i
k=i的时候的最小次数。
s
u
m
[
i
]
sum[i]
sum[i]表示深度大于等于
i
i
i的点有多少个。
则 f [ i ] = m a x ( j + ⌈ s u m [ j + 1 ] i ⌉ ) f[i]=max(j+\lceil \frac{sum[j+1]}{i} \rceil) f[i]=max(j+⌈isum[j+1]⌉)
含义是用了 i i i次把全 i i i层都取掉,然后剩下的每次都能取满。
qwq现在来解释一下为什么是这个柿子。
首先,比较容易证明答案一定在所有的 ( j + ⌈ s u m [ j + 1 ] i ⌉ (j+\lceil \frac{sum[j+1]}{i} \rceil (j+⌈isum[j+1]⌉中,因为这已经是最优情况了(前i次最多取i层,而后面也是每次取满,所以一定是最优的情况,不存在更优秀的情况。)
那么为什么是要取 m a x max max呢。
是为了避免不合法的情况。
这里不合法的情况有两种情况,首先是前
i
i
i次取不满
前
i
层
前i层
前i层。那么如果存在这个情况,一定存在
j
j
j使得,前
j
j
j层能够
j
j
j次取满,但是
j
到
i
j到i
j到i不能用
j
−
i
j-i
j−i取满,则存在等式
⌈
s
u
m
[
j
+
1
]
k
⌉
>
⌈
s
u
m
[
i
+
1
]
k
⌉
+
(
i
−
j
)
\lceil \frac{sum[j+1]}{k} \rceil > \lceil \frac{sum[i+1]}{k} \rceil + (i-j)
⌈ksum[j+1]⌉>⌈ksum[i+1]⌉+(i−j)
⌈
s
u
m
[
j
+
1
]
k
⌉
+
j
>
⌈
s
u
m
[
i
+
1
]
k
⌉
+
i
\lceil \frac{sum[j+1]}{k} \rceil + j> \lceil \frac{sum[i+1]}{k} \rceil + i
⌈ksum[j+1]⌉+j>⌈ksum[i+1]⌉+i
那么取 m a x max max,这种不合法的情况就能排除。
另一种不合法的情况就是,后面的次数并不能每次都取满。
如果上面的情况合法,那么一定存在 ⌈ s u m [ i + 1 ] − s u m [ i + x + 1 ] k ⌉ + i + x + 1 > ⌈ s u m [ i + 1 ] k ⌉ + i \lceil \frac{sum[i+1]-sum[i+x+1]}{k} \rceil + i+x+1 > \lceil \frac{sum[i+1]}{k} \rceil + i ⌈ksum[i+1]−sum[i+x+1]⌉+i+x+1>⌈ksum[i+1]⌉+i
因为存在一层满足不能够一次用满k,且没有多余的东西让他选,那这时候等式左边的 i + x + 1 i+x+1 i+x+1等于该层的时候,一定比原本的柿子更大。
至于为什么不存在一个小于 m a x max max并且合法的情况,是因为一层最少需要一次。而如果存在 m i n min min,说明要满足用小于 j j j次,选完 j j j层,而这个东西是不可能的。
qwq
那么证明到这里,大概能说明上述的柿子的是对的了。
也就是
f
[
i
]
=
m
a
x
(
j
+
⌈
s
u
m
[
j
+
1
]
i
⌉
)
f[i]=max(j+\lceil \frac{sum[j+1]}{i} \rceil)
f[i]=max(j+⌈isum[j+1]⌉)
那接下来应该怎么优化呢。
我们将上述柿子进行变形
f [ i ] = m a x ( ⌈ j × i + s u m [ j + 1 ] i ⌉ ) f[i]=max(\lceil \frac{j\times i+ sum[j+1]}{i} \rceil) f[i]=max(⌈ij×i+sum[j+1]⌉)
那么如果存在一个 j > k j>k j>k且 j 比 k j比k j比k优秀的话,应该满足
j × i + s u m [ j + 1 ] > k × i + s u m [ k + 1 ] j\times i + sum[j+1] > k \times i + sum[k+1] j×i+sum[j+1]>k×i+sum[k+1]
经过化简, s u m [ j + 1 ] − s u m [ k + 1 ] j − k > − i \frac{sum[j+1]-sum[k+1]}{j-k}>-i j−ksum[j+1]−sum[k+1]>−i
直接上斜率优化就好
s
u
m
sum
sum数组可以直接通过前缀和求出来
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
int sum[maxn];
int n,m;
int point[maxn],nxt[maxn],to[maxn];
int cnt;
int deep[maxn];
int dp[maxn];
int a[maxn];
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
struct Point{
ll x,y,num;
};
Point q[maxn];
ll chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool Count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)>=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while(tail>=head+1 && Count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while(tail>=head+1 && q[head+1].y-q[head].y>lim*(q[head+1].x-q[head].x)) head++;
}
int mx;
void dfs(int x,int dep)
{
deep[dep]++;
mx=max(mx,dep);
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
dfs(p,dep+1);
}
}
int qq;
int main()
{
n=read();qq=read();
int ymh =0;
for (int i=1;i<=qq;i++) a[i]=read(),ymh=max(ymh,a[i]);
for (int i=2;i<=n;i++)
{
int x=read();
addedge(x,i);
}
dfs(1,1);
for (int i=mx;i>=0;i--)
{
deep[i]+=deep[i+1];
}
for (int i=0;i<mx;i++)
push((Point){i,deep[i+1],i});
for (register int i=1;i<=ymh;++i)
{
pop((-1)*i);
int now = q[head].num;
dp[i]=now+((deep[now+1]-1)/i)+1;
}
for (int i=1;i<=qq;i++) cout<<dp[a[i]]<<" ";
return 0;
}