Japanese-Chinese Machine Translation Model with Transformer & PyTorch

实验环境

Python 3.6.7

一个使用Jupyter Notebook, PyTorch, Torchtext和sentencepece的教程

导入所需的软件包
首先,让我们确保我们的系统中安装了以下软件包,如果你发现有些软件包丢失了,一定要安装它们。

import math
import torchtext
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from collections import Counter
from torchtext.vocab import Vocab
from torch.nn import TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer
import io
import time
import pandas as pd
import numpy as np
import pickle
import tqdm
import sentencepiece as spm
torch.manual_seed(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# print(torch.cuda.get_device_name(0)) ## 如果你有GPU,请在你自己的电脑上尝试运行这一套代码

获取并行数据集
在本教程中,我们将使用从JParaCrawl![http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl]]下载的日语-英语并行数据集,该数据集被描述为“NTT创建的最大的公开可用的英语-日语并行语料库”。它主要是通过抓取网络并自动对齐平行句子创建的。你也可以在这里看到报告。

df = pd.read_csv('./zh-ja/zh-ja.bicleaner05.txt', sep='\\t', engine='python', header=None)
trainen = df[2].values.tolist()#[:10000]
trainja = df[3].values.tolist()#[:10000]
# trainen.pop(5972)
# trainja.pop(5972)

在导入所有日语和英语对应项之后,我删除了数据集中的最后一个数据,因为它有一个缺失的值。总的来说,trainen和trainja中的句子数量都是5,973,071,然而,出于学习目的,通常建议在一次使用所有数据之前对数据进行采样并确保一切正常工作,以节省时间。

下面是一个包含在数据集中的句子示例。

print(trainen[500])
print(trainja[500])
Chinese HS Code Harmonized Code System < HS编码 2905 无环醇及其卤化、磺化、硝化或亚硝化衍生物 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...
Japanese HS Code Harmonized Code System < HSコード 2905 非環式アルコール並びにそのハロゲン化誘導体、スルホン化誘導体、ニトロ化誘導体及びニトロソ化誘導体 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...

我们也可以使用不同的并行数据集来跟随本文,只要确保我们可以将数据处理成如上所示的两个字符串列表,其中包含日语和英语句子。

准备标记器
与英语或其他按字母顺序排列的语言不同,日语句子不包含空格来分隔单词。我们可以使用JParaCrawl提供的标记器,它是使用sentencepece为日语和英语创建的,您可以访问JParaCrawl网站下载它们。

en_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.en.nopretok.model')
ja_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.ja.nopretok.model')

加载标记器之后,您可以测试它们,例如,通过执行下面的代码。

en_tokenizer.encode("All residents aged 20 to 59 years who live in Japan must enroll in public pension system.", out_type='str')
['▁All',
 '▁residents',
 '▁aged',
 '▁20',
 '▁to',
 '▁59',
 '▁years',
 '▁who',
 '▁live',
 '▁in',
 '▁Japan',
 '▁must',
 '▁enroll',
 '▁in',
 '▁public',
 '▁pension',
 '▁system',
 '.']
ja_tokenizer.encode("年金 日本に住んでいる20歳~60歳の全ての人は、公的年金制度に加入しなければなりません。", out_type='str')
['▁',
 '年',
 '金',
 '▁日本',
 'に住んでいる',
 '20',
 '歳',
 '~',
 '60',
 '歳の',
 '全ての',
 '人は',
 '、',
 '公的',
 '年',
 '金',
 '制度',
 'に',
 '加入',
 'しなければなりません',
 '。']

建立TorchText词汇对象并将句子转换为Torch张量
使用标记器和原始句子,然后构建从TorchText导入的Vocab对象。根据数据集的大小和计算能力,这个过程可能需要几秒钟或几分钟。不同的标记器也会影响构建词汇所需的时间,我尝试了其他几个日语标记器,但sensenepece似乎很好,足够快。

def build_vocab(sentences, tokenizer):
  counter = Counter() # 使用 Counter 对象来统计句子列表中单词的出现频率
  for sentence in sentences:
    counter.update(tokenizer.encode(sentence, out_type=str))
  return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>']) # 利用统计得到的词频信息,构建一个词汇表(vocab),并将 <unk>、<pad>、<bos>、<eos> 这四个特殊符号添加到词汇表中
ja_vocab = build_vocab(trainja, ja_tokenizer)
en_vocab = build_vocab(trainen, en_tokenizer)

在我们有了词汇表对象之后,我们可以使用词汇表和标记器对象来为我们的训练数据构建张量。

def data_process(ja, en):
  data = []
  for (raw_ja, raw_en) in zip(ja, en): # 循环遍历 zip(ja, en),对每一对原始的日语句子 raw_ja 和英语句子 raw_en 进行处理。
    # 对原始的日语句子 raw_ja 和英语句子 raw_en 分别使用 ja_tokenizer 和 en_tokenizer 进行编码,并通过词汇表 ja_vocab 和 en_vocab 将单词转换为对应的索引值
    ja_tensor_ = torch.tensor([ja_vocab[token] for token in ja_tokenizer.encode(raw_ja.rstrip("\n"), out_type=str)],
                            dtype=torch.long)
    en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer.encode(raw_en.rstrip("\n"), out_type=str)],
                            dtype=torch.long)
    # 构建日语句子和英语句子的张量(tensor),数据类型为 torch.long,并将它们存储为 (ja_tensor_, en_tensor_) 的元组。
    data.append((ja_tensor_, en_tensor_))
  return data
train_data = data_process(trainja, trainen)

创建要在训练期间迭代的DataLoader对象
在这里,我将BATCH_SIZE设置为16以防止“cuda内存不足”,但这取决于各种事情,例如您的机器内存容量,数据大小等,因此可以根据您的需要随意更改批大小(注意:PyTorch的教程使用Multi30k德语-英语数据集将批大小设置为128)。

BATCH_SIZE = 8  # 设置每个批次的样本数量为 8
PAD_IDX = ja_vocab['<pad>']  # 获取填充符号 '<pad>' 在日语词汇表中的索引
BOS_IDX = ja_vocab['<bos>']  # 获取起始符号 '<bos>' 在日语词汇表中的索引
EOS_IDX = ja_vocab['<eos>']  # 获取结束符号 '<eos>' 在日语词汇表中的索引

def generate_batch(data_batch):  # 定义一个名为 generate_batch 的函数,接受一个数据批次 data_batch 作为输入
  ja_batch, en_batch = [], []  # 创建空列表 ja_batch 和 en_batch,用于存储处理后的日语和英语句子
  for (ja_item, en_item) in data_batch:  # 遍历数据批次中的每个样本 (ja_item, en_item)
    ja_batch.append(torch.cat([torch.tensor([BOS_IDX]), ja_item, torch.tensor([EOS_IDX])], dim=0))  # 在日语句子的开头和结尾分别添加起始符号 '<bos>' 和结束符号 '<eos>',并将其连接到日语句子中
    en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))  # 在英语句子的开头和结尾分别添加起始符号 '<bos>' 和结束符号 '<eos>',并将其连接到英语句子中
  ja_batch = pad_sequence(ja_batch, padding_value=PAD_IDX)  # 使用 pad_sequence 函数对处理后的日语句子列表 ja_batch 进行对齐(填充)操作,填充值为 PAD_IDX
  en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)  # 使用 pad_sequence 函数对处理后的英语句子列表 en_batch 进行对齐(填充)操作,填充值为 PAD_IDX
  return ja_batch, en_batch  # 返回处理后的日语批次 ja_batch 和英语批次 en_batch

train_iter = DataLoader(train_data, batch_size=BATCH_SIZE,  # 创建一个名为 train_iter 的 DataLoader 对象,用于加载训练数据集 train_data
                        shuffle=True,  # 设置数据集打乱顺序(shuffle=True)
                        collate_fn=generate_batch)  # 指定使用 generate_batch 函数进行数据加载和处理

Sequence-to-sequence变压器
接下来的代码和文本解释(以斜体书写)来自原始的PyTorch教程[https://pytorch.org/tutorials/beginner/translation_transformer.html]]。除了BATCH_SIZE和单词de_vocab被更改为ja_vocab之外,我没有做任何更改。

Transformer是在“Attention is all you need”论文中提出的用于解决机器翻译任务的Seq2Seq模型。变压器模型由编码器和解码器块组成,每个块包含固定数量的层。

编码器通过一系列多头注意和前馈网络层对输入序列进行传播处理。编码器的输出称为存储器,与目标张量一起馈送到解码器。编码器和解码器以端到端方式使用教师强迫技术进行培训。

from torch.nn import (TransformerEncoder, TransformerDecoder,
                      TransformerEncoderLayer, TransformerDecoderLayer)

# 定义一个名为 Seq2SeqTransformer 的自定义神经网络模型
class Seq2SeqTransformer(nn.Module):
    def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
                 emb_size: int, src_vocab_size: int, tgt_vocab_size: int,
                 dim_feedforward:int = 512, dropout:float = 0.1):
        super(Seq2SeqTransformer, self).__init__()
        # 创建 TransformerEncoderLayer 并初始化 TransformerEncoder
        encoder_layer = TransformerEncoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
        # 创建 TransformerDecoderLayer 并初始化 TransformerDecoder
        decoder_layer = TransformerDecoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_decoder = TransformerDecoder(decoder_layer, num_layers=num_decoder_layers)

        # 创建线性层用于生成输出序列
        self.generator = nn.Linear(emb_size, tgt_vocab_size)
        # 创建源语言和目标语言的 TokenEmbedding 层
        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
        # 创建位置编码层,用于提供序列元素的位置信息
        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
                tgt_mask: Tensor, src_padding_mask: Tensor,
                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
        # 编码源语言句子序列
        src_emb = self.positional_encoding(self.src_tok_emb(src))
        # 编码目标语言句子序列
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        # 使用 TransformerEncoder 对源语言句子进行编码
        memory = self.transformer_encoder(src_emb, src_mask, src_padding_mask)
        # 使用 TransformerDecoder 对目标语言句子进行解码得到输出序列
        outs = self.transformer_decoder(tgt_emb, memory, tgt_mask, None,
                                        tgt_padding_mask, memory_key_padding_mask)
        # 通过线性层生成最终的输出序列
        return self.generator(outs)

    def encode(self, src: Tensor, src_mask: Tensor):
        # 对源语言句子进行编码过程,返回编码后的表示
        return self.transformer_encoder(self.positional_encoding(
                            self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        # 对目标语言句子进行解码过程,返回解码后的表示
        return self.transformer_decoder(self.positional_encoding(
                          self.tgt_tok_emb(tgt)), memory,
                          tgt_mask)

文本标记通过使用标记嵌入表示。位置编码被添加到标记嵌入中以引入词序的概念。

# 定义位置编码类,用于添加位置信息到输入的 token 表示中
class PositionalEncoding(nn.Module):
    def __init__(self, emb_size: int, dropout, maxlen: int = 5000):
        super(PositionalEncoding, self).__init__()
        # 初始化位置编码
        den = torch.exp(- torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)
        pos = torch.arange(0, maxlen).reshape(maxlen, 1)
        pos_embedding = torch.zeros((maxlen, emb_size))
        pos_embedding[:, 0::2] = torch.sin(pos * den)
        pos_embedding[:, 1::2] = torch.cos(pos * den)
        pos_embedding = pos_embedding.unsqueeze(-2)

        # 添加 dropout 层
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('pos_embedding', pos_embedding)

    def forward(self, token_embedding: Tensor):
        # 将位置编码与 token_embedding 相加后应用 dropout
        return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])

# 定义 TokenEmbedding 类,用于将 token 映射为对应的嵌入表示
class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size: int, emb_size):
        super(TokenEmbedding, self).__init__()
        # 创建 Embedding 层
        self.embedding = nn.Embedding(vocab_size, emb_size)
        self.emb_size = emb_size

    def forward(self, tokens: Tensor):
        # 通过 Embedding 层将 token 映射为对应的嵌入表示,并乘以 emb_size 的平方根
        return self.embedding(tokens.long()) * math.sqrt(self.emb_size)

我们创建一个后续单词掩码来阻止目标单词关注它的后续单词。我们还创建遮罩,用于屏蔽源和目标填充令牌

# 生成一个方形的下三角矩阵,用于掩码机制
def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones((sz, sz), device=device)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

def create_mask(src, tgt):
    src_seq_len = src.shape[0]
    tgt_seq_len = tgt.shape[0]

    # 生成目标语言掩码
    tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
    # 创建源语言掩码
    src_mask = torch.zeros((src_seq_len, src_seq_len), device=device).type(torch.bool)

    # 创建源语言和目标语言的填充掩码
    src_padding_mask = (src == PAD_IDX).transpose(0, 1)
    tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)

    return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask
SRC_VOCAB_SIZE = len(ja_vocab)
TGT_VOCAB_SIZE = len(en_vocab)
EMB_SIZE = 512
NHEAD = 8
FFN_HID_DIM = 512
BATCH_SIZE = 16
NUM_ENCODER_LAYERS = 3
NUM_DECODER_LAYERS = 3
NUM_EPOCHS = 16

# 初始化 Seq2SeqTransformer 模型
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS,
                                 EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE,
                                 FFN_HID_DIM)

# 对模型参数进行权重初始化
for p in transformer.parameters():
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

transformer = transformer.to(device)

# 定义交叉熵损失函数
loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)

# 定义 Adam 优化器
optimizer = torch.optim.Adam(
    transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9
)

def train_epoch(model, train_iter, optimizer):
    # 将模型设置为训练模式
    model.train()
    losses = 0
    for idx, (src, tgt) in enumerate(train_iter):
        src = src.to(device)
        tgt = tgt.to(device)

        tgt_input = tgt[:-1, :]

        src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

        # 前向传播获取预测结果
        logits = model(src, tgt_input, src_mask, tgt_mask,
                       src_padding_mask, tgt_padding_mask, src_padding_mask)

        optimizer.zero_grad()

        tgt_out = tgt[1:,:]
        loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
        loss.backward()

        optimizer.step()
        losses += loss.item()
    return losses / len(train_iter)

def evaluate(model, val_iter):
    # 将模型设置为评估模式
    model.eval()
    losses = 0
    for idx, (src, tgt) in enumerate(valid_iter):
        src = src.to(device)
        tgt = tgt.to(device)

        tgt_input = tgt[:-1, :]

        src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

        # 前向传播获取预测结果
        logits = model(src, tgt_input, src_mask, tgt_mask,
                       src_padding_mask, tgt_padding_mask, src_padding_mask)
        
        tgt_out = tgt[1:,:]
        loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
        losses += loss.item()
    return losses / len(val_iter)

开始训练
最后,在准备好必要的类和函数之后,我们准备训练我们的模型。这是不言而喻的,但是完成训练所需的时间可能会有很大的不同,这取决于很多事情,比如计算能力、参数和数据集的大小。

当我使用JParaCrawl(每种语言大约有590万个句子)的完整句子列表来训练模型时,使用单个NVIDIA GeForce RTX 3070 GPU,每个epoch大约需要5个小时。

代码如下:

for epoch in tqdm.tqdm(range(1, NUM_EPOCHS+1)):
    start_time = time.time()
    
    # 训练一个epoch,并获取训练损失
    train_loss = train_epoch(transformer, train_iter, optimizer)
    
    end_time = time.time()
    
    # 打印当前epoch的训练损失和耗时
    print(f"Epoch: {epoch}, Train loss: {train_loss:.3f}, Epoch time = {(end_time - start_time):.3f}s")

试着用训练好的模型翻译一个日语句子
首先,我们创建翻译新句子的函数,包括获取日语句子、标记化、转换为张量、推理,然后将结果解码回句子,但这次是英语。

def greedy_decode(model, src, src_mask, max_len, start_symbol):
    # 将输入数据和掩码移动到指定设备
    src = src.to(device)
    src_mask = src_mask.to(device)
    
    # 编码输入序列
    memory = model.encode(src, src_mask)
    
    # 初始化目标序列,以起始符号开始
    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device)
    
    # 逐步生成目标序列
    for i in range(max_len-1):
        memory = memory.to(device)
        
        # 创建目标序列掩码和存储器掩码
        memory_mask = torch.zeros(ys.shape[0], memory.shape[0]).to(device).type(torch.bool)
        tgt_mask = (generate_square_subsequent_mask(ys.size(0)).type(torch.bool)).to(device)
        
        # 解码得到输出
        out = model.decode(ys, memory, tgt_mask)
        out = out.transpose(0, 1)
        
        # 通过生成器获取概率最高的下一个词
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim=1)
        next_word = next_word.item()
        
        # 将预测结果添加到目标序列中
        ys = torch.cat([ys,
                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
        
        # 如果生成终止符号,则结束生成
        if next_word == EOS_IDX:
            break
    
    return ys

def translate(model, src, src_vocab, tgt_vocab, src_tokenizer):
    model.eval()
    
    # 对输入句子进行编码
    tokens = [BOS_IDX] + [src_vocab.stoi[tok] for tok in src_tokenizer.encode(src, out_type=str)] + [EOS_IDX]
    num_tokens = len(tokens)
    src = torch.LongTensor(tokens).reshape(num_tokens, 1)
    
    # 创建掩码并调用贪婪解码函数生成目标序列
    src_mask = torch.zeros(num_tokens, num_tokens).type(torch.bool)
    tgt_tokens = greedy_decode(model, src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten()
    
    # 将目标序列的词转换为文本
    translation = " ".join([tgt_vocab.itos[tok] for tok in tgt_tokens]).replace("<bos>", "").replace("<eos>", "")
    
    return translation

然后,我们可以调用翻译函数并传递所需的参数。

translate(transformer, "HSコード 8515 はんだ付け用、ろう付け用又は溶接用の機器(電気式(電気加熱ガス式を含む。)", ja_vocab, en_vocab, ja_tokenizer)
' ▁H S ▁ 代 码 ▁85 15 ▁ 焊 接 设 备 ( 包 括 电 气 加 热 ) 。 '
trainen.pop(5)
'Chinese HS Code Harmonized Code System < HS编码 8515 : 电气(包括电热气体)、激光、其他光、光子束、超声波、电子束、磁脉冲或等离子弧焊接机器及装置,不论是否 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...'
trainja.pop(5)
'Japanese HS Code Harmonized Code System < HSコード 8515 はんだ付け用、ろう付け用又は溶接用の機器(電気式(電気加熱ガス式を含む。)、レーザーその他の光子ビーム式、超音波式、電子ビーム式、 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...'

保存Vocab对象和训练好的模型
最后,在训练完成后,我们将首先使用Pickle保存Vocab对象(en_vocab和ja_vocab)。

import pickle

# 打开一个文件,用于存储数据
# 存储英文词汇表
file = open('en_vocab.pkl', 'wb')
pickle.dump(en_vocab, file)
file.close()

# 存储日文词汇表
file = open('ja_vocab.pkl', 'wb')
pickle.dump(ja_vocab, file)
file.close()

最后,我们还可以使用PyTorch保存和加载函数保存模型以供以后使用。通常,有两种保存模型的方法,这取决于我们以后想要使用它们的目的。第一个仅用于推理,我们可以稍后加载模型并使用它从日语翻译成英语。

# save model for inference
torch.save(transformer.state_dict(), 'inference_model')

第二个也是用于推理的,但当我们稍后想要加载模型并想要恢复训练时也是如此。

# 保存模型和检查点以便以后恢复训练
torch.save({
    'epoch': NUM_EPOCHS,
    'model_state_dict': transformer.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'loss': train_loss,
}, 'model_checkpoint.tar')

  • 19
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值