车联网网络中移动边缘计算的缓存机制
1 引言
目前,随着联网车辆技术的快速发展,配备多种车载娱乐系统(如高清播放器)以下载视频流并与基础设施通信的车辆数量正在大幅增加。思科最近的一份报告估计,未来五年内全球移动数据总量将增长近十倍,到2020年,全球月移动数据流量将达到30.6艾字节。随着无线通信技术的最新进展,车载网络已成为第五代移动通信技术的重要应用。事实上,激增的车辆数据流量导致车对基础设施(V2I)通信延迟显著增加,并给连接本地基础设施与核心网络(CN)的回传链路带来了沉重负担。为了减轻这一负担,专用短程通信(DSRC)已被开发为车对万物通信(V2X)的标准,在5.9 GHz频段拥有75兆赫的许可频谱。
车载自组织网络(VANETs)可被视为专用短程通信(DSRC)的一个典型应用场景,是为信息和娱乐提供高效车对外界通信(V2X)的一种方法。在车载自组织网络中,用于5.9 GHz频谱(ITS-G5)通信的专用短程通信(DSRC)和智能交通系统(ITS)网络协议栈均基于IEEE 802.11p技术。然而,近期研究表明,这些技术存在诸如信道接入延迟无界以及缺乏服务质量保障等问题。此外,部署路侧单元(RSUs)的高成本也不容忽视。为应对这一问题,第三代合作伙伴计划(3GPP)已在LTE第14版和第五代移动通信技术(5G)应用场景中分别纳入了将长期演进技术(LTE)与车对外界通信(V2X)相结合的概念。最近,移动边缘计算系统(MECS)作为一种新兴范式被提出,能够将云存储能力毛细式分布到长期演进车对基础设施(LTE-V2I)网络的边缘。特别是,移动边缘计算系统(MECS)直接在基站(BSs)上使用通用计算平台实现,从而能够在靠近车辆的位置提供上下文感知服务和缓存部署。基于LTE的车联网网络(V2I)和移动边缘缓存(MEC)技术相比车载自组织网络(VANET),能够利用现有的基站(BSs),从而实现低成本和快速部署的边缘缓存系统。基于LTE的车联网网络(V2I)具备低延迟、高渗透率、大覆盖范围和高可靠性通信的特点。在此领域,一些现有研究聚焦于车载网络中的缓存管理策略、无线资源分配以及最优延迟约束卸载。然而,缓存分配机制,特别是LTE-V2I网络中的缓存容量部署,尚未受到足够关注。
最近,关于车载网络的研究主要关注V2I网络架构。由LTE-V或IEEE 802.11p技术实现的V2I架构支持车辆与基础设施之间的通信。刘等人提出了一种可扩展的软件定义网络使能架构,该架构将V2I网络与移动边缘缓存(MEC)相结合,并基于精确的特定应用需求提供可靠的通信服务。此外,曹等人提出了一种基于MEC的V2I系统,该系统集成了大数据分析功能,并从移动客户端收集驾驶大数据。江等人考虑了多决策因素以促进V2I网络的发展。另一方面,缓存容量分配问题在蜂窝网络中受到了广泛关注。这种分配方法在蜂窝无线接入网络或基站之间进行,依据多种性能指标,如平均下载延迟和用户请求满意度。黄等人和杨等人讨论了认知无线网络中的缓存方案。李和万提出了一种针对移动网络大量数据下载的主动式缓存策略。王等人在车载网络中提出了一种拍卖博弈缓存方案。研究表明,无线传输速率、内容流行度和回传链路容量是影响缓存容量分配的关键因素。然而,对于LTE系统而言,仍需进一步考虑一些关键因素。在此领域,丁等人讨论了在固定用户位置和用户到达率条件下的缓存机制,但该研究假设忽略了用户的移动性。实际上,在LTE-V2I系统中,车辆以高速移动。因此,在设计缓存容量分配方法时,有必要且至关重要地考虑车辆速度、车辆到达率和高速公路状况等特性。因此,如何设计一种最优机制,在保证车辆高体验质量(QoE)的同时最小化缓存部署成本,是一个具有挑战性的问题。
在本文中,我们研究了在集成MEC的LTE-V2I网络中平均下载百分比(ADP)与缓存分配的联合优化,旨在最大化车辆的用户体验质量(QoE),同时尽可能降低MECS的缓存大小。本工作的主要技术贡献总结如下。
通过制定有效的缓存放置策略,在系统ADP和系统缓存分配之间实现了权衡。与ADP最优算法相比,我们的算法在最小化缓存大小分配的同时,实现了接近最大化的ADP。
我们揭示了车辆速度、车辆到达率以及满足缓存分配所需规模的内容流行度分布的影响,以及回传容量对系统所需成本的影响。仿真结果表明,所提出的联合优化算法优于均匀分配,尤其在回传容量较小和速度较高的情况下,实现了显著的性能提升。
本文的其余部分组织如下。在第2节中,我们首先描述系统模型。在第3节中,我们推导了问题的公式,并提出了针对两种高速公路场景的缓存分配比例策略。仿真结果在第4节中展示并进行分析。最后,在第5节中得出结论。
2 系统模型
作为长期演进技术(LTE)蜂窝网络的主要部署方案,我们考虑一种V2I系统,该系统由基站集合 $\mathcal{B}={1,…,M}$ 表示,在高速公路上等间距分布,并配备一个MECS。车辆可以接入附近的基站,从而从核心网或MECS下载内容。我们假设每辆车开始下载其中一项内容。
一旦车辆进入基站的覆盖区域,但如果所需内容已缓存在附近的基站中,则可体验更高的下载速度。该架构如图1所示。
2.1 车辆移动模型
在该模型中,我们假设从左右两侧进入高速公路的车辆数,分别用 $V_l(t)$ 和 $V_r(t)$ 表示,服从参数分别为 $\lambda_l$ 和 $\lambda_r$ 的泊松过程。因此,可得
$$
P{V_i(t)= k}= \frac{(\lambda_it)^k}{k!} e^{-\lambda_it}, \quad i= l, r; \quad k= 0, 1, 2....
$$
每辆车停留在基站覆盖范围长度 $L$ 内的持续时间可按如下方式计算:
$$
t_i= \frac{L}{v_i} = \frac{2 \ast R \sin \theta}{v_i},
$$
其中 $L= 2 \ast R \sin \theta$, $\theta$ 为圆心角,高速公路位于半径等于 $R$ 的基站覆盖范围内。$v_i$ 表示车辆速度,且为常数。
在时隙 $t$ 内进入基站覆盖区域的车辆数表示为 $V_i(t)$。概率 $V_i(t) \geq N$ 可表示为
$$
P{V_i(t) \geq N}= \sum_{k=N}^{\infty} \frac{(\lambda_it)^k}{k!} e^{-\lambda_i t}.
$$
此外,当车辆到达概率达到 $\gamma$ 时,我们假设最大车辆数量约为 $k$。特别是,当 $\gamma$ 被最小化时,最大车辆数量趋于一个固定值。因此,我们得到以下方程。
$$
P{V_i(t)> N}< \gamma= \sum_{k=N}^{\infty} \frac{(\lambda_it)^k}{k!} e^{-\lambda_i t} < \gamma
$$
$$
P{V_i(t) \leq N}= \sum_{k=1}^{N} \frac{(\lambda_it)^k}{k!} e^{-\lambda_i t} > 1 - \gamma.
$$
事实上,当 $\gamma$ 最小时,意味着最大车辆数量趋向于一个固定值。然后,它可以表示为
$$
\sum_{k=1}^{N} \frac{(\lambda_it)^k}{k!} e^{-\lambda_it}> 1 - o,
$$
其中 $o$ 相对于1来说是无穷小的;因此,我们可以得到以下结果:
$$
\sum_{k=1}^{N} \frac{(\lambda_it)^k}{k!} e^{-\lambda_it} \approx 1.
$$
2.2 内容缓存模型
在实际网络中,一些近期的研究表明,车辆的下载概率可以使用某些流行度分布进行拟合。在所提出的工作中,我们假设车辆从给定的内容库 $\mathcal{F}={1,…,F}$ 下载感兴趣的内容,其中所有内容均为相等大小的 $L(f)$ 比特,且具有不同的流行度。内容-$f(f= 1,…,F)$ 被下载的概率记为 $P_i(f)$ 和 $i(i= l,r)$;高速公路的不同侧具有不同的流行度。事实上,下载内容的流行度遵循齐夫分布,可表示为
$$
P_i(f)= \frac{\Omega_i}{f^{\alpha_i}},
$$
其中 $\Omega_i=\left( \sum_{j=1}^{F} \frac{1}{j^{\alpha_i}} \right)^{-1}$。
参数 $\alpha$ 在上述公式中描述了分布的陡峭程度。由于内容分发网络服务器中的内容分布以及移动终端的数据流量动态,这类幂律被用来表征许多现实世界的现象。较高的 $\alpha$ 值对应更陡峭的分布,这意味着部分内容比目录中的其余内容更受欢迎(即用户具有非常相似的兴趣)。相反,较低的值描述了一种更均匀的行为,各项内容几乎同样受欢迎(即车辆具有更多不同的兴趣)。参数 $\alpha$ 可根据不同车辆行为和MEC系统部署策略(例如校园、企业、城市和农村环境)取不同的值。在我们的实验设置中,该参数的实际取值将在后续章节中给出。
不失一般性,内容按流行度降序排列,其中内容-1表示具有最高下载概率的内容。内容-$f$ 的概率函数可表示为 $P_i(f)$,并通过收集的数据进行预测;因此,可将其视为已知优先级(即 $\sum_{f=1}^{F}P_i(f)= 1$)。由此假设,车辆根据 $P_i(f)$ 进行独立请求。缓存最热门的内容将被视为MEC系统的最优缓存策略,单向MEC系统的缓存命中率可表示如下:
$$
G_i= 1 - \frac{\sum_{f=S_i}^{F} \frac{1}{f^{\alpha_i}}}{\sum_{f=1}^{F} \frac{1}{f^{\alpha_i}}},
$$
其中,$S_i$ 是高速公路 $i$ 侧的缓存大小。$S_{MEC} \triangleq \left\lfloor \frac{C_{MEC}}{L(f)} \right\rfloor=\sum S_i$ 定义为MECS的缓存容量,$\left\lfloor \cdot \right\rfloor$ 为向下取整函数。因此,MEC系统的整体缓存命中率可表示为
$$
G= 1 - \frac{\sum_{f=S_{MEC}}^{F} \frac{1}{f^{\alpha_i}}}{\sum_{f=1}^{F} \frac{1}{f^{\alpha_i}}}.
$$
3 问题表述与分析
在本节中,我们首先介绍无线传输速率和性能指标,即ADP,这是衡量LTE-V2I网络中移动边缘缓存性能的重要指标。接着,我们对单向场景下的最优缓存分配策略进行分析。此外,在此基础上,我们进一步研究双向场景中的缓存分配策略,并推导出最优机制。最后,我们分析最优部署策略如何受到各种LTE-V2I网络参数的影响,并为缓存容量分配提供见解。
3.1 无线传输速率
在该模型中,我们关注LTE-V2I网络中的多车辆正交频分多址系统,其中系统中的每个信道相互正交,即车辆之间不存在干扰。为简化问题,我们假设小尺度快衰落的影响会平均化,且信道增益具有相同的分布。因此,车辆的无线传输速率取决于其路径损耗效应、可用带宽以及信噪比(SNR)。此外,我们假设当车辆可以从MECS下载感兴趣的内容时,其无线传输速率设为 $C_{MEC}$ 兆比特每秒。在小区中,若每辆车辆的可用带宽为 $W$,基站的发射功率为 $P$,则车辆的无线下行速率由香农定理给出:
$$
C_{MEC}= W \log_2\left(1+ \frac{P \beta R^{-\varepsilon}}{W \delta^2}\right).
$$
否则,车辆只能通过回传链路以 $C_{Back}$ 兆比特每秒的速率从核心网获取内容。此外,基站的回传容量表示为 $C_{bmax}$ 兆比特每秒,在密集蜂窝网络场景中通常受限。我们进一步考虑
$$
\sum C_{Back} \leq C_{bmax}
$$
$$
C_{Back} \leq C_{MEC}.
$$
在时隙 $t$ 进入基站覆盖区域的车辆数量表示为 $V(t)= V_l(t)+ V_r(t)$。
$$
C_B=
\begin{cases}
C_{Back}, & \text{if } V(t) \leq B(t) \
\frac{C_{bmax}}{K_{Back}}, & \text{if } V(t)> B(t)
\end{cases}
$$
其中 $B(t)= \left\lfloor \frac{C_{bmax}}{C_{Back}} \right\rfloor$ 是由回传链路传输速率 $C_{Back}$ 决定的同一时间内最多可下载的车辆数,$K_{Back}$ 是当前通过回传链路从核心网获取感兴趣内容的车辆数。
3.2 平均下载百分比
显然,如果一辆车辆可以从MEC系统下载感兴趣的内容,则下载速率为 $C= C_{MEC}$;否则为 $C= C_B$。当车辆数量设置为 $V(t)$ 时,平均下载速度为
$$
\bar{C}= \sum_{n=0}^{V(t)} \binom{V(t)}{n} G^n_i (1 - G_i)^{V(t) -n} \left(nC_{MEC}+(V(t) - n)C_B\right)
$$
特别地,当 $V(t)= 1$ 时,$\bar{C}= C_{MEC} \ast G_i+ C_B(1 - G_i)$。
因此,平均下载可以表示如下:
$$
\Phi= \int \bar{C} dt= \int (C_{MEC}+ C_B) dt.
$$
不失一般性,当车辆数量为 $V(t)= k$ 时,平均下载可按如下方式计算:
$$
\Phi_k= P(V(t)= k) \ast \Phi= \frac{(\lambda_k t)^k}{k!} e^{-\lambda t} \int \bar{C} dt= \frac{(\lambda_k t)^k}{k!} e^{-\lambda t} \sum_{n=0}^{k} G^n_i (1 - G_i)^{k-n} \left((nC_{MEC})+(k- n)C_B\right) t.
$$
我们假设当 $\int C_{MEC} dt \geq L(f)$ 或 $\int C_B dt \geq L(f)$ 时,则 $\int \bar{C} dt=L(f)$,这意味着一个内容在时间 $t$ 内下载完成。因此,ADP可以表示为
$$
P_{aver}= \frac{\bar{\Phi}}{L(f)},
$$
其中 $\bar{\Phi}$ 是平均下载;可以表示如下:
$$
\bar{\Phi}= \sum_{k=1}^{N} \Phi_k= \sum_{k=1}^{N} P(V(t)= k) \ast \Phi= \sum_{k=1}^{N} \frac{(\lambda_k t)^k}{k!} e^{-\lambda t} \int \bar{C} dt.
$$
因此,ADP可以表示如下:
$$
P_{aver}= \frac{\bar{\Phi}}{L(f)} = \sum_{k=1}^{N} \frac{(\lambda t)^k}{k!} e^{-\lambda t} \frac{\int \bar{C} dt}{L(f)},
$$
其中 $\bar{C}= C_{MEC}G_i+ C_B(1 - G_i)$,
$$
C_{MEC}= W \log\left(1+ \frac{P \beta}{2\sqrt{(R \sin \theta - Vt)^2+(R \cos \theta)^2}^{-\varepsilon} W \delta^2 }\right).
$$
3.3 单向场景
为简化分析,我们首先关注图2所示的单向场景。在单向场景中,上述公式中用于区分车辆进入不同侧的下标 $i$ 可以忽略。当回传容量固定时,我们关注的是需要分配给MECS以实现最大ADP(记为 $P_{opt}$)的缓存部署。由于平均下载和缓存占用成本的影响不同,
3.4 双向场景
图3展示了一个双向场景,车辆从两侧进入高速公路;此外,来自不同侧的车辆具有不同的系统参数,如车辆速度、车辆到达率和内容流行度分布。
在双向模型中,主要目标是找到最优缓存部署,以最小化缓存大小分配并最大化ADP。为了实现不同方面的公平性,该问题被表述为在联合成本下,以最小的缓存大小分配最大化ADP,并可得到该优化问题的等效上镜形式
$$
\mathcal{P}
2 \colon \arg\min
{S_l,S_r} (P_{aver} - P_{opt})^2 + \omega_l S_l + \omega_r S_r
$$
s.t. $P{V(t)> N}< \gamma$
$0 \leq \omega_l \leq 1$
$0 \leq \omega_r \leq 1$
$S_l + S_r \leq S_{MEC}$.
该联合优化问题难以求解,因此我们将 $\mathcal{P}_2$ 问题解耦为两个阶段:首先,将双向问题分解为两个单向问题,并根据 $\mathcal{P}_1$ 的形式进行求解,以最小化时延;其次,算法1给出了所提出的联合成本最优算法(JCOA),用于在回程容量受限的车载网络情况下求解 $\mathcal{P}_2$。此外,引入了两个权重因子 $\omega_l$ 和 $\omega_r$,它们不仅表示对下载成本或缓存成本的侧重,还表示对高速公路左右侧缓存大小成本的侧重。
4 仿真结果
在本节中,我们给出仿真结果,以验证缓存容量分配的效果,并说明各种系统参数的影响。LTE-V2I网络参数如表1所示。
参数 | 值 | 参数 | 值 |
---|---|---|---|
$R$ | 200m | $\lambda_2 t$ | [0, 5]/秒 |
$\lambda_1 t$ | [0, 5]/秒 | $W$ | 10 兆赫兹 |
$\alpha$ | [0.4, 1.5] | $v$ | [5, 30] 米/秒 |
$\varepsilon$ | 4 | $\delta^2$ | -112 dBm |
$P$ | 25 W | $C_{back}$ | [10 , 120] 兆比特每秒 |
$\theta$ | $\pi/6$ | $C_{max}$ | [0.5, 10] 兆比特每秒 |
$F$ | [1000, 5000] | $C_{MEC}$ | [4 , 10] 兆比特每秒 |
$\omega_l,\omega_r$ | [0, 1] | $L(f)$ | 100 兆比特 |
在图4和图5中,我们考虑了一个单向场景下的LTE-V2I网络,其中车辆数量 $V(t)$ 服从参数为 $\lambda t$ 的泊松过程。图4和图5明确展示了在给定 $\lambda t$ 时缓存容量与ADP之间的权衡关系。可以看出,我们的近似结果接近最优结果,而最优结果需要图书馆F中超过70%的内容需要被存储。我们观察到,当LTE-V2I网络在无缓存的情况下工作时,通过增加 $\lambda t$ 可以获得较低的ADP。此外,当 $\lambda t$ 较高时,增加缓存大小可以有效提高ADP。
我们分析了内容流行模式对算法性能的影响,如图6所示。具体而言,我们将内容流行度的形状参数 $\alpha$ 从0.56 变化到1.36。正如预期,随着 $\alpha$ 的增加,LTE-V2I网络所需的缓存大小减小,因为较低的缓存容量已足以支持系统运行。当 $\alpha$ 较高时,绝大多数车辆请求集中在少数内容上。此外,随着库数量 $F$ 的增加,所需的缓存大小也随之增加。
综上所述,当内容流行度分布高度集中(即 $\alpha > 1$)时,网络可以通过低得多的缓存容量得到支持。
我们在图7中分析了回传容量对LTE-V2I网络性能的影响。我们观察到,回传增强可以提高ADP。特别是当回传容量较低时,增加缓存大小能更有效地提升ADP。在无缓存的场景下,较低的回传容量会导致ADP性能极差。正如预期,增加回传容量不仅能提升系统性能,还能降低所需的缓存容量。
在图8中,我们绘制了最优解的ADP性能,并比较了两侧缓存大小的平均分配情况。同时,我们观察到相应的请求缓存大小可以在图9中达到ADP性能。我们分析了在双向场景下缓存大小成本对ADP的影响,该场景中的内容流行度范围为0.56至1.36。正如预期,我们的算法显著优于平均分配方案,并渐近地达到了最优ADP性能。然而,除非缓存接近70%的内容库 $F$ 大小(例如,图9显示ADP Opt需要超过700的缓存大小,而内容库 $F$ 仅需1000),否则很难达到最优ADP性能。
在MECS中实现了这一目标。实际上,MECS中的缓存容量远低于图书馆中的容量。如图8和图9所示,我们的算法相比平均缓存容量分配获得了更高的ADP,并在较低的缓存大小(约50%)下达到了近似最优ADP(约85%)。
5 结论
在本文中,我们设计了缓存部署方案,通过考虑网络的回传容量、车辆速度、内容流行度分布以及高速公路的两侧,以最小化支持缓存的LTE-V2I网络的缓存大小。在单向场景下,提出了一种联合优化表达式,能够在满足所需最优缓存部署机制的同时,有效权衡所需的缓存容量与ADP。此外,我们全面阐述了各种LTE-V2I参数的影响。另外,针对双向场景设计了最大化整体系统性能的缓存部署机制。仿真结果表明,该最优分配机制能够充分挖掘缓存的优势,同时也为高速公路场景下的缓存部署提供了有益的见解。