文本数据结构转换与应用
1. 构建基础TF-IDF向量化器
TF-IDF(词频 - 逆文档频率)是一种常用的文本特征提取方法,可将文本数据转换为数值向量,便于后续的机器学习和数据分析。以下是构建基础TF-IDF向量化器的步骤:
1. 实例化TF-IDF向量化器 :
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
- 拟合数据并转换为TF-IDF向量 :
tf_idf_matrix = vectorizer.fit_transform(preprocessed_corpus)
- 查看结果 :
print(vectorizer.get_feature_names())
print(tf_idf_matrix.toarray())
print("\nThe shape of the TF-IDF matrix is: ", tf_idf_matrix.shape)
示例输出如下:
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



