8、文本数据结构转换与应用

文本数据结构转换与应用

1. 构建基础TF-IDF向量化器

TF-IDF(词频 - 逆文档频率)是一种常用的文本特征提取方法,可将文本数据转换为数值向量,便于后续的机器学习和数据分析。以下是构建基础TF-IDF向量化器的步骤:
1. 实例化TF-IDF向量化器

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()
  1. 拟合数据并转换为TF-IDF向量
tf_idf_matrix = vectorizer.fit_transform(preprocessed_corpus)
  1. 查看结果
print(vectorizer.get_feature_names())
print(tf_idf_matrix.toarray())
print("\nThe shape of the TF-IDF matrix is: ", tf_idf_matrix.shape)

示例输出如下:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值