拉格朗日对偶性

在支持向量机中,需要用拉格朗日对偶性将原始问题转换成对偶问题,解得对偶问题的解从而得到原始问题的解。在此简单介绍拉格朗日对偶性的基本原理和方法。

原始问题

假设 f(x) ci(x) hj(x) 是定义在 Rn 上的连续可微函数。考虑约束最优化问题

minxRnf(x)s.t.ci(x)hj(x)0,i=1,2,,k=0,j=1,2,,l(C.1)(C.2)(C.3)

称此约束最优化问题为原始最优化问题或原始问题。
首先引进拉格朗日函数
L(x,α,β)=f(x)+i=1kαici(x)+j=1lhj(x)(C.4)
其中 x=(x(1),x(2),,x(n))TRn αi βj 是拉格朗日乘子, αi0 。考虑 x 的函数
θp(x)=maxα,β;αi0L(x,α,β)(C.5)
,下标p表示原始问题。假设有某个 x ,不符合原始问题的约束条件,也就是存在某个i或者 j 使得ci(w)<0或者 hj(x)0 ,那么就可以使某个 αi+ βj 使得 βhj(x) ,因此 θp(x)+ ,如果 x 满足约束条件,显而易见的是θp(x)=f(x)。从而有下式:
θp(x)=maxα,β;αi0L(x,α,β)={f(x)+,x,(C.6)

所以考虑
minxθp(x)=minxmaxα,β;αi0L(x,α,β)(C.7)
与原始问题等价。问题 minxmaxα,β;αi0L(x,α,β) 成为广义拉格朗日函数的极小极大问题。因此原始问题转换成了广义拉格朗日的极小极大问题。设原始问题的最优值为
p=minxθp(x)(C.8)
称为原始问题的最优值。

对偶问题

定义

θD(x)=minxL(x,α,β)(C.9)
在考虑极大化 θD(x) 即:
maxα,β;αi0θD(x)=maxα,β;αi0minxL(x,α,β)(c.10)
上式称为拉格朗日函数的极大极小问题。将此问题表示为约束最优化问题
maxα,βθD(x)=maxα,βminxL(x,α,β)s.t.αi0,i=1,2,,k(C.11)
称为原始问题的对偶问题。定义对偶问题的最优值
d=maxα,βθD(α,β)(C.12)
称为对偶问题的最优值。

原始问题与对偶问题的关系

定理C.1 若原始问题和对偶问题都有最优值,则

d=maxα,βθD(α,β)minxθp(x)=p

推论C.2 x α,β 分别是原始问题和对偶问题的可行解,并且 d=p ,则 x α,β 分别是原始问题和对偶问题的额最优解。

在某些条件下,原始问题和对偶问题的最优值相等,即 d=p 。这时可以用解对偶问题替代解原始问题。下面一定理的形式叙述有关的重要结论而不予证明。

定理C.2 对于原始问题和对偶问题,假设函数 f(x) ci(x) 都是凸函数, hj(x) 是仿射函数;并且不等式约束 ci(x) 是严格可行的,即存在 x 使得对所有的i ci(x)0 ,则存在 x,α,β ,使 x 是原始问题的解, α,β 是对偶问题的解。并且

p=d=L(x,α,β)

定理C.3对于原始问题和对偶问题,假设函数 f(x) ci(x) 都是凸函数, hj(x) 是仿射函数;并且不等式约束 ci(x) 是严格可行的,即存在 x 使得对所有的i ci(x)0 ,则 x α,β 分别是原始问题和对偶问题的解的充分必要条件是 x,α,β ,使 x 满足下面的KKT条件

xL(x,α,β)αL(x,α,β)βL(x,α,β)αci(x)ci(x)αihj(x)=0=0=0=000=0
特别补充的是 αci(x)=0 称为KKT的对偶互补条件。由此条件可知,若 αi>0 ci(x)=0

引自:李航. 统计学习方法[M]. 清华大学出版社, 2012.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值