
推荐算法
文章平均质量分 84
Yoangh
奋斗的小程序猿
展开
-
推荐算法基础--矩阵奇异值分解svd
在推荐系统中协同过滤应该算是大名鼎鼎了,基本上做推荐的线上都会用协同过滤,比较简单而且效果较好,而协同过滤又分为基于用户的和基于物品的,基本上原理就是“与当前用户行为相似的用户喜欢一个物品,那么当前用户也会喜欢这个物品”,或者“物品A和物品B同时都被一个用户群喜欢,那么认为他们相似”。而协同过滤算法主要有两个模型,最邻近点对模型和潜在语义模型,第一个比较常用且为大家熟知,因为就是定义权值计算相似度,原创 2017-09-04 10:04:10 · 8210 阅读 · 0 评论 -
推荐算法基础--相似度计算方法汇总
推荐系统中相似度计算可以说是基础中的基础了,因为基本所有的推荐算法都是在计算相似度,用户相似度或者物品相似度,这里罗列一下各种相似度计算方法和适用点余弦相似度similarity=cos(θ)=A⋅B∥A∥∥B∥=∑i=1nAi×Bi∑i=1n(Ai)2−−−−−−−√×∑i=1n(Bi)2−−−−−−−√{\text{similarity}}=\cos(\theta )={A\cdot B \ov原创 2017-09-04 15:21:57 · 34610 阅读 · 2 评论