置换群题目汇总

本文介绍了置换群的概念,通过一个序列变换的例子展示了置换群的循环特性。讨论了如何利用置换群解决序列置换问题,如nyoj900和poj3270题目,提出求置换群中轮换的最小公倍数和优化序列排序的代价策略。重点在于理解如何在置换群中找到最优交换策略以降低代价。

首先介绍一下什么是置换群,不说一些繁琐的概念。
首先给你一个序列,假如:
s = {1 2 3 4 5 6}
然后给你一个变换规则
t = {6 3 4 2 1 5}
就是每一次按照t规则变换下去
比如这样
第一次:6 3 4 2 1 5
第二次:5 4 2 3 6 1
第三次:1 2 3 4 5 6
发现经过几次会变换回去,在变换下去就是循环的了,这就是一个置换群。
我们可以这样表示一个置换群,比如按照上面变化规则
1->6->5->1 那么这些是一个轮换
2->3->4->2 这些是一个轮换
所以可以写为
t = { {1 6 5},{ 2 3 4 } },然后就衍生出了一些这样的题目
1: nyoj900序列置换
就是求置换群的的一个循环,那么很明显,我们求出置换群中的所有轮换的元素个数,求最小公倍数即可,注意这个题目会超int,坑…
AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 300;
const int inf = 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值