基于差距迪菲 - 赫尔曼群签名方案的阈值签名、多重签名和盲签名
1. 引言
近期提出了一种新的签名方案,它运用了计算迪菲 - 赫尔曼(CDH)问题困难但判定迪菲 - 赫尔曼(DDH)问题容易的群,这类群被称为差距迪菲 - 赫尔曼(GDH)群。Boneh 等人提出的签名方案 GS 就是基于此。其秘密密钥是随机元素 $x \in Z_p^*$,公钥是 $y = g^x$,签名时计算 $\sigma = H(M)^x$,验证则检查 $(g, y, H(M), \sigma)$ 是否为有效的迪菲 - 赫尔曼元组。该方案在随机预言模型下被证明对选择消息攻击具有存在性不可伪造性,且在某些 GDH 群中可生成约 160 比特的短签名。
基于 GS 签名方案,本文提出了鲁棒的主动阈值签名方案、多重签名方案和盲签名方案。这些方案得益于 GDH 群和基础方案的优雅结构,比现有类似方案更简单、高效且实用,同时在适当的计算假设下提供了安全证明。
2. 背景
- 签名方案及其安全性 :签名方案 $S$ 由三个算法组成:随机密钥生成算法 $K$、签名生成算法 $S$ 和验证算法 $V$。常见的安全性概念是选择消息攻击下的不可伪造性。
-   迪菲 - 赫尔曼问题和 GDH 群  : 
  - CDH 问题 :给定三个随机群元素 $(g, u, v)$,计算 $h = g^{\log_g u \cdot \log_g v}$。
- DDH 问题 :判断四个群元素 $(
 
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   20
					20
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            