统计学中的理论分布与假设检验
1. 常见理论分布介绍
在统计学中,有多种理论分布用于描述数据的特征和规律。以下是几种常见的理论分布:
- 均匀分布 :当变量 (x) 有 (N = 6) 个离散值时,每个值的概率均为 (1/6)。例如掷一个六面骰子,每个面出现的概率都是 (1/6)。其概率密度函数和累积分布函数具有特定的形式,且所有概率之和为 1,累积分布函数的最大值也为 1。
- 二项或伯努利分布 :由瑞士科学家雅各布·伯努利(Jakob Bernoulli)命名,用于描述在 (N) 次试验中取得 (x) 次成功的离散概率,每次试验成功的概率为 (p)。该分布有两个参数 (N) 和 (p)。例如在石油钻探中,假设钻探成功的概率为 0.1,那么在 10 次钻探中恰好有 3 次成功的概率可以通过二项分布的概率密度函数计算得出,结果约为 6%。
- 泊松分布 :当试验次数 (N \to \infty) 且成功概率 (p \to 0) 时,二项分布趋近于泊松分布,其单一参数 (\lambda = Np)。该分布适用于描述极低发生率的过程,如地震、火山喷发、风暴和洪水等。
- 正态或高斯分布 :当 (p = 0.5) 且 (N \to \infty) 时,二项分布趋近于正态分布,由均值 (\mu) 和标准差 (\sigma) 定义。正态分布常用于描述均值既是最频繁出现的值,也是最可能出现的值的情况,且偏差的概率在均值两侧相等,并随着与均值距离的增加而减小。标准正态分布是正态分布的一个特殊情况,其均值为 0,标准差为 1。
-
统计学理论分布与假设检验详解
订阅专栏 解锁全文
4万+

被折叠的 条评论
为什么被折叠?



