【LeetCode从零单刷】Unique Binary Search Trees I & II

I 题目:

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

解答:

给出节点数,求可以构成的二叉搜索树的个数。

首先介绍什么是“二叉搜索树”:就是二叉树,每个非空节点的左子树的所有节点值,小于根节点值;每个非空节点的右子树的所有节点值,大于根节点值。

一般这种题目都是递归(假设上一步结果已知,据此求下一步)的。为了节省时间,利用空间把每一步的结果保存到数组里面,就成了动态规划。

一开始我的思路:我知道 (n-1) 个节点的数量 f(n-1),n个节点就是 n 种 (n-1) 个节点的结果,在每个结果中插入第 n 个节点。所以 f(n) = n * f(n-1)。

但这样有个很麻烦的问题……这些子树里面有重复的,否则 f(3) = 6 而不是 5 了。然后我就陷入了查重的坑了……

其实这么想。如果我剩余下来的节点很特殊:第n个节点是根节点。这样把整个树分为了 i 个节点的左子树,和 (n-i-1) 个节点的右子树。各自的组合方法相乘即可得到整棵树的组合方法。

class Solution {
public:
    int numTrees(int n) {
        if(n==0)    return 0;
        if(n==1)    return 1;
        if(n==2)    return 2;
        
        int* tree = new int[n + 1];
        tree[0] = 1;
        tree[1] = 1;
        for(int i = 2; i <= n; i++)
        {
            tree[i] = 0;
            for(int j = 0; j < i; j++)
            {
                tree[i] += tree[i-j-1] * tree[j];
            }
        }
        return tree[n];
    }
};

II 题目:

如果我们需要的不仅是个数,而是每棵树的具体样式呢?

解答:

同理,我们从根节点为切入点。遍历每一个点都尝试作为根节点,递归得到左右子树的各种样式,依次组合拼接。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<TreeNode*> generatePartTrees(int start, int end) {
        vector<TreeNode*> ans;
        
        if(start > end)     return ans; 
        
        if(start == end) {
            TreeNode* mid = new TreeNode(start);
            ans.push_back(mid);
            return ans;
        }
        
        for(int i = start; i <= end; i++) {
            vector<TreeNode*> left  = generatePartTrees(start, i - 1);
            vector<TreeNode*> right = generatePartTrees(i + 1, end);
            
            int lnum = left.size();
            int rnum = right.size();
            
            if(lnum == 0) {
                for(int k = 0; k < rnum; k++) {
                    TreeNode* mid = new TreeNode(i);
                    mid->right  = right[k];
                    ans.push_back(mid);
                }
            }
            else if(rnum == 0) {
                for(int j = 0; j < lnum; j++) {
                    TreeNode* mid = new TreeNode(i);
                    mid->left   = left[j];
                    ans.push_back(mid);
                }
            }
            else {
                for(int j = 0; j < lnum; j++) {
                    for(int k = 0; k < rnum; k++) {
                        TreeNode* mid = new TreeNode(i);
                        mid->left   = left[j];
                        mid->right  = right[k];
                        ans.push_back(mid);
                    }
                }
            }
        }
        return ans;
    }
    
    vector<TreeNode*> generateTrees(int n) {
        return generatePartTrees(1, n);
    }
};

总结:

递归是根据所有已知项得到的。并不一定只是上一项,也可以从特殊点突破。尤其对于树结构而言,根是很特殊的入手点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值