本文是对《对语言大模型的若干观察和思考》等网文总结
ChatGPT与LLM技术现状
LLM的主要手段
模型:Transformer拥有强大的表示能力,能对具有组合性(compositinality)的语言进行很好的表示和学习。
预训练(pre-training):使用大规模文本数据进行语言建模(language modeling),学习进行的是数据压缩,也就是单词序列的生成概率最大化或预测误差最小化。
监督微调 SFT(supervised fine tunning):学习的是输入到输出的映射,X→YX→YX→Y, 或者是输入到输出的映射及产出过程 X,C1⋯,Cn→YX, C_1⋯,C_n→YX,C1⋯,Cn→Y,学习到模型的基本行为。这里,C1⋯,CnC_1⋯,C_nC1⋯,Cn 代表思维链。
基于人类反馈的强化学习 RLHF(reinforcement learning from human feedback):根据人的反馈,调整模型的整体行为。
LLM 核心竞争力
ChatGPT 和 GPT4 相比传统的深度学习技术,如 BERT,主要是在智能性和通用性上取得了巨大突破。具备语言、知识、简单推理能力,能够很好地近似人的智能行为。不需要标注数据就可以在不同领域完成不同任务,也就是进行零样本或小样本学习
LLM 带来的巨大进步。究其原因: