本文是对OpenCV2.4.13文档的部分翻译,作个人学习之用,并不完整。
Sobel算子基于在边缘部分像素灰度出现了一个很大的变化。得到灰度的一阶导数我们发现边缘是一个极大值:
而二阶导数:
此处的二阶导数是0,所以我们也可以使用这个特性来推断图像中的轮廓边缘,然而0不止出现在边缘处,还可能是无意义的位置,这就需要应用滤波函数。
Laplacian算子:
1.二阶导数可以用于检测边缘,因为图像是二维的,我们需要在两个维度都执行导数运算。这就需要Laplacian算子。
2.定义:
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
using namespace cv;
/**
* @function main
*/
int main()
{
Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
const char* window_name = "Laplace Demo";
/// 载入图像
src = imread("lena.jpg");// argv[1]
if( !src.data )
{ return -1; }
/// 使用高斯滤波器模糊消噪
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
/// 将图像转换为灰度图
cvtColor( src, src_gray, COLOR_RGB2GRAY );
/// 创建窗口
namedWindow( window_name, WINDOW_AUTOSIZE );
/// 执行拉普拉斯函数
Mat abs_dst;
// 原图像、目标图像、目标深度(输入图是CV_8U,定义CV_16S来避免溢出)、核大小、后三个使用默认值
Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
// 将输出转换为CV_8U图像
convertScaleAbs( dst, abs_dst );
/// 显示结果
imshow( window_name, abs_dst );
waitKey(0);
return 0;
}
结果:
对比度高的地方边缘会更明显。