(27)Air Band OpenCV2.4.13_Laplace算子

本文是对OpenCV2.4.13文档的部分翻译,作个人学习之用,并不完整。


Sobel算子基于在边缘部分像素灰度出现了一个很大的变化。得到灰度的一阶导数我们发现边缘是一个极大值:


而二阶导数:


此处的二阶导数是0,所以我们也可以使用这个特性来推断图像中的轮廓边缘,然而0不止出现在边缘处,还可能是无意义的位置,这就需要应用滤波函数。

Laplacian算子:

1.二阶导数可以用于检测边缘,因为图像是二维的,我们需要在两个维度都执行导数运算。这就需要Laplacian算子。

2.定义:


#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/**
 * @function main
 */
int main()
{

  Mat src, src_gray, dst;
  int kernel_size = 3;
  int scale = 1;
  int delta = 0;
  int ddepth = CV_16S;
  const char* window_name = "Laplace Demo";

  /// 载入图像
  src = imread("lena.jpg");// argv[1] 

  if( !src.data )
    { return -1; }

  /// 使用高斯滤波器模糊消噪
  GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );

  /// 将图像转换为灰度图
  cvtColor( src, src_gray, COLOR_RGB2GRAY );

  /// 创建窗口
  namedWindow( window_name, WINDOW_AUTOSIZE );

  /// 执行拉普拉斯函数
  Mat abs_dst;
  // 原图像、目标图像、目标深度(输入图是CV_8U,定义CV_16S来避免溢出)、核大小、后三个使用默认值
  Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
  // 将输出转换为CV_8U图像
  convertScaleAbs( dst, abs_dst );

  /// 显示结果
  imshow( window_name, abs_dst );

  waitKey(0);

  return 0;
}

结果:


对比度高的地方边缘会更明显。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值