Tensorflow
yfraquelle
这个作者很懒,什么都没留下…
展开
-
Tensorflow12-Dlib人脸检测
尝试使用tensorflow和环境Windows10 64bit python3.6Install Visual Studio 2015https://my.visualstudio.com/Downloads?q=visual%20studio%202015&wt.mc_id=o~msft~vscom~older-downloadsInstall CMake late原创 2017-09-05 14:12:38 · 1715 阅读 · 0 评论 -
TensorFlow的第三方库——Sonnet
Sonnet是基于TensorFlow的一个库,可用于方便地构建复杂的神经网络,git地址为:https://github.com/deepmind/sonnet1.Sonnet简介sonnet采用了面向对象,中心思想是首先构造神经网络局部的python对象,然后将这些对象独立地连接到TensorFlow的计算图中。这里的python对象就是“模块”(Module),sonnet可以用输入张量为参...原创 2018-03-16 19:42:12 · 9273 阅读 · 0 评论 -
Tensorflow00-新篇章
又要开启一个专题的学习——Tensorflow一个表面基于python,背后基于C++的开源机器学习框架,采用数据流图形式实现神经网络。首篇先收集一下各种资料:官网中文社区原创 2017-08-17 07:58:45 · 301 阅读 · 0 评论 -
Tensorflow08-卷积神经网络
1.卷积神经网络的运作:神经网络由一连串的神经层组成,每一层神经层里存在着很多的神经元用于识别每一种神经网络都有它的输入值和输出值,当输入值很多比如图片(很多像素)使用卷积神经网络卷积:对图片上一小块像素区域进行处理,加强了连续性,使得神经网络能看到一个图形而不是一个点,加强了神经网络对图片的理解卷积神经网络有一个批量过滤器,持续不断地在图片上滚动,收集一块像素区域的信息然后整原创 2017-08-29 17:25:43 · 360 阅读 · 0 评论 -
Tensorflow09-saver
Tensorflow还不能保存整个神经网络的模型,但是可以保存变量我们将变量保存到net/save.ckpt文件中,还可以将变量读出来import tensorflow as tf# saver tensorflow现在只能保存Variable不能保存整个神经网络框架W=tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32,name='weig原创 2017-08-29 17:34:26 · 295 阅读 · 0 评论 -
Tensorflow11-ImageNet
ImageNet是一个可以分为1000类的图像数据库,我们使用tensorflow预先训练的模型测试一下下载tensorflow模型仓库,执行命令:cd models/tutorials/image/imagenetpython classify_image.py结果为对下面这只熊猫的识别情况再尝试自己下载一张图片并调整到256x256结果参考原创 2017-08-31 16:23:58 · 400 阅读 · 0 评论 -
Tensorflow10-CNN经典模型
原文链接:深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习笔转载 2017-08-31 14:30:34 · 644 阅读 · 0 评论 -
Tensorflow05-激活函数、优化器、过拟合和Dropout
1.激活函数激活函数用于在线性组合之后添加非线性因素。在我看来,相当于扩大不同类数据之间的差距。称之为“激活”,就是让一类数据激活一个条件得到一个显著不同的输出。常见的激活函数有如下:tf.nn.relu(features, name=None)tf.nn.relu6(features, name=None)tf.nn.crelu(features, name=原创 2017-08-29 14:05:48 · 1966 阅读 · 0 评论 -
Tensorflow07-mnist
mnist手写数字识别问题是入门tensorflow的经典例子使用人工神经网络处理mnist问题是以图片为输入,以一个模为10的向量为输出,最后1在的位置表示手写数字图片的数值。训练神经网络的思路:第一层以大小为64的训练集为输入,权重矩阵为64x50,该层使用tanh激活函数,最后输出大小为50的向量。这个过程中dropout40%的神经元。第二层以大小为50的第一层输出原创 2017-08-29 17:14:37 · 395 阅读 · 0 评论 -
Tensorflow06-可视化
1.pyplotimport tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 添加神经层的函数def add_layer(inputs,in_size,out_size,activation_function=None):# None means linear Weights=tf.Vari原创 2017-08-29 14:42:10 · 272 阅读 · 0 评论 -
Tensorflow04-神经网络实例
具体内容可以参见莫烦教程原创 2017-08-29 10:58:33 · 246 阅读 · 0 评论 -
Tensorflow03-语法
具体内容可以参见莫烦教程1.Session在之前的例子已经见过session的用法,session就是用于执行命令控制对话的。我们还可以使用with语句:with tf.Session() as sess:#打开session用sess来命名,最后自动关闭 result=sess.run(product) print(result)2.Variable使用t原创 2017-08-28 13:32:30 · 212 阅读 · 0 评论 -
Tensorflow02-入门示例
具体内容可以参见莫烦教程这里以一个简单的参数优化作为示例模拟训练的核心过程,提取出编写过程的关键点1.变量:tensorflow需要使用tensorflow.Variable()来定义变量2.初始化:变量定义后需要使用tensorflow.initialize_all_variables()来进行初始化3.会话:一切计算需要使用session.run(var)来进行4.训练:差原创 2017-08-28 13:17:04 · 249 阅读 · 0 评论 -
Tensorflow01-神经网络简介
生物神经网络的工作原理就是神经元之间的冲动传播。机器学习借助了这个概念,采用类比的手法提出了人工神经网络。人工神经网络本质上是一种有向图,节点就类比为神经元(的细胞核?),有向弧就类比为神经元之间的连接(突触?)。特殊的是这种有向图是分层的,层与层之间有连接,同一层的节点之间不连接。典型的人工神经网络结构分为三层,最开始的一层称为输入层,最后一层称为输出层,中间(可能多层)的称为隐藏层。原创 2017-08-22 10:48:26 · 542 阅读 · 0 评论 -
tensorflow可能遇到的坑
持续更新:说明:此处cuda8.0 cudnn6.0,Anaconda3.0,python3.51.安装版本:tensorflow-gpu==1.4,0不指定版本很可能出现ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory.2.TypeError: soft...原创 2019-04-25 12:50:29 · 628 阅读 · 0 评论