kafka是什么?
是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。
为什么需要消息队列?
主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞;
使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。
使用消息队列的好处?
①解耦:
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束;
比如我发送一个数据包,已经在消息队列中了,那如果我的接口出现问题了,这个数据包也还在,不会丢失。
②异步通信:
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们;
③灵活性 & 峰值处理能力:
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃;
④缓冲:
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况;
⑤可恢复性:
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
kafka的特性:
1、高吞吐量、低延迟
每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力;
2、可扩展性
集群支持热扩展;
3、持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失;
4、容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败);
5、高并发
支持数千个客户端同时读写。
消息队列的两种模式:
(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。
kafka的工作过程:
什么是zookeeper?
Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目;
Zookeeper = 文件系统 + 通知机制;
是一个基于观察者模式设计的分布服务管理框式架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。
Zookeeper 特点:
(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
(2)Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。
(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。
(5)数据更新原子性,一次数据更新要么成功,要么失败。
(6)实时性,在一定时间范围内,Client能读到最新数据。
Zookeeper 应用场景
提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。
统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。
统一配置管理
(1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
(2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。
统一集群管理
(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
(2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。
服务器动态上下线
客户端能实时洞察到服务器上下线的变化。
软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
Zookeeper 选举机制:
①第一次启动选举机制(主要根据myid来判断)
(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
(3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;
(4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;(5)服务器5启动,同4一样当小弟。
②非第一次启动选举机制(先根据任期,再根据事务id(读写性能),最后根据myid判断)
(1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:
1)服务器初始化启动(这就是第一次)
2)服务器运行期间无法和Leader保持连接。
(2)而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
1)集群中本来就已经存在一个Leader。
对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
2)集群中确实不存在Leader。
假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
选举Leader规则:
1.EPOCH大的直接胜出
2.EPOCH相同,事务id大的胜出
3.事务id相同,服务器id大的胜出
SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加
部署 zookeeper集群:
①关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
②安装 JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version
③安装 Zookeeper
cd /opt
tar -zxvf apache-zookeeper-3.6.3-bin.tar.gz
mv apache-zookeeper-3.6.3-bin /usr/local/zookeeper-3.6.3
④修改配置文件
cd /usr/local/zookeeper-3.6.3/conf/
cp zoo_sample.cfg zoo.cfg
cd /usr/local/zookeeper-3.6.3/conf/
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg
tickTime=2000 #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10 #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5 #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper-3.6.3/data ●修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.6.3/logs ●添加,指定存放日志的目录,目录需要单独创建
clientPort=2181 #客户端连接端口
#添加集群信息
server.1=192.168.169.10:3188:3288
server.2=192.168.169.20:3188:3288
server.3=192.168.169.30:3188:3288
⑤在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.6.3/data
mkdir /usr/local/zookeeper-3.6.3/logs
在每个节点的dataDir指定的目录下创建一个 myid 的文件
echo 1 > /usr/local/zookeeper-3.6.3/data/myid
echo 2 > /usr/local/zookeeper-3.6.3/data/myid
echo 3 > /usr/local/zookeeper-3.6.3/data/myid
⑥配置 Zookeeper 启动脚本
vim /etc/init.d/zookeeper
#!/bin/bash
#chkconfig:2345 20 90
#description:Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.6.3'
case $1 in
start)
echo "---------- zookeeper 启动 ------------"
$ZK_HOME/bin/zkServer.sh start
;;
stop)
echo "---------- zookeeper 停止 ------------"
$ZK_HOME/bin/zkServer.sh stop
;;
restart)
echo "---------- zookeeper 重启 ------------"
$ZK_HOME/bin/zkServer.sh restart
;;
status)
echo "---------- zookeeper 状态 ------------"
$ZK_HOME/bin/zkServer.sh status
;;
*)
echo "Usage: $0 {start|stop|restart|status}"
esac
// 设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper
⑦分别启动 Zookeeper
service zookeeper start
查看当前状态
service zookeeper status
以上zookeeper装好!!!
部署 kafka 集群:
①安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka
②修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak} 做个备份,养成好习惯
vim server.properties
broker.id=0 ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.80.10:9092 ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3 ●42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8 ●45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400 ●48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400 ●51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600 ●54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs ●60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1 ●65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1 ●69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168 ●103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824 ●110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.80.10:2181,192.168.80.11:2181,192.168.80.12:2181 ●123行,配置连接Zookeeper集群地址
mkdir -p /usr/local/kafka/logs 这一步不要忘记!!!!
③修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile
④配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
echo "---------- Kafka 启动 ------------"
${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
echo "---------- Kafka 停止 ------------"
${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
$0 stop
$0 start
;;
status)
echo "---------- Kafka 状态 ------------"
count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
if [ "$count" -eq 0 ];then
echo "kafka is not running"
else
echo "kafka is running"
fi
;;
*)
echo "Usage: $0 {start|stop|restart|status}"
esac
//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka
分别启动 Kafka
service kafka start
⑤测试:
创建topic:
kafka-topics.sh --create --zookeeper 192.168.169.10:2181,192.168.169.20:2181,192.168.169.30:2181 --replication-factor 2 --partitions 3 --topic yht
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可;
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 ;
--partitions:定义分区数 ;
--topic:定义 topic 名称;
查看当前服务器中的所有 topic:
kafka-topics.sh --list --zookeeper 192.168.169.10:2181,192.168.169.20:2181,192.168.169.30:2181
查看某个 topic 的详情:kafka-topics.sh --describe --zookeeper 192.168.169.10:2181,192.168.169.20:2181,192.168.169.30:2181
发布消息:
kafka-console-producer.sh --broker-list 192.168.169.10:9092,192.168.169.20:9092,192.168.169.30:9092 --topic yht
消费消息:
kafka-console-consumer.sh --bootstrap-server 192.168.169.10:9092,192.168.169.20:9092,192.168.169.30:9092 --topic yht --from-beginning
修改分区数:
kafka-topics.sh --zookeeper 192.168.169.10:9092,192.168.169.20:9092,192.168.169.30:9092 --alter --topic test --partitions 6
删除 topic:
kafka-topics.sh --delete --zookeeper 192.168.169.10:9092,192.168.169.20:9092,192.168.169.30:9092 --topic test