[NOIP2012 普及组] 质因数分解
题目描述
已知正整数 n n n 是两个不同的质数的乘积,试求出两者中较大的那个质数。
输入格式
输入一个正整数 n n n。
输出格式
输出一个正整数 p p p,即较大的那个质数。
样例 #1
样例输入 #1
21
样例输出 #1
7
提示
1 ≤ n ≤ 2 × 1 0 9 1 \le n\le 2\times 10^9 1≤n≤2×109
NOIP 2012 普及组 第一题
常识
a是两个不同质数的积,那么a一定有4个因数,且只有4个因数
分别是,1,a本身,质数1和质数2
so,你从2开始找,只要是能被a取余为0的就是拿过比较小的质数
然后用a/质数1就可以找到比较大的能够质数了
代码
#include<cstdio>
int n;
int main(){
scanf("%d",&n); //读入
for(int i = 2;i < n;i++){
if(n%i==0){ //若i为第一个因数
printf("%d\n", n/i); //输出
return 0;
}
}
return 0;
}
这个是别人的代码,不过思路都相同
我原来的思路不知道只有四个因数的时候
原来思路和代码
import java.util.Scanner;
@SuppressWarnings("all")
public class Main{
public static void main(String [] args){
Scanner scanner = new Scanner(System.in);
int nextInt = scanner.nextInt();
boolean sign=false;
for(int i=2;i<Math.sqrt(nextInt);i++) {
if(isprime(i)) {
for(int j=nextInt;j>Math.sqrt(j);j--) {
if(isprime(j)) {
if(i*j==nextInt) {
System.out.println(j);
sign=true;
break;
}
}
}
}
if(sign)
break;
}
}
public static boolean isprime(int num) {
for(int i=2;i<Math.sqrt(num);i++) {
if(num%i==0)
return false;
}
return true;
}
}
原来也是想先找小的质数,然后从a开始减找质数,看有没有i*j=a的(其实不用这样的,直接用isprime(a/j)就可以了,如果是直接输出)
经验太少