小Q有X首长度为A的不同的歌和Y首长度为B的不同的歌,现在小Q想用这些歌组成一个总长度正好为K的歌单,每首歌最多只能在歌单中出现一次,在不考虑歌单内歌曲的先后顺序的情况下,请问有多少种组成歌单的方法。
输入描述:
每个输入包含一个测试用例
每个测试的第一行包含一个整数,表示歌单的总长度K(1<=K<=1000).
接下来的一行包含四个正整数,分别表示歌的第一种长度A(A<=10)和数量X(X<=100)以及歌的第二种长度B(B<=10)和数 量Y(Y<=100).保证A不等于B。
输出描述:
输出一个整数,表示组成歌单的方法取模。因为答案可能会很大,输出对1000000007取模的结果
#include <stdio.h>
long long c[105][105];
const int mod = 1000000007;
void init() //计算组合数
{
c[0][0] = 1;
for(int i = 1;i <= 100;i++)
{
c[i][0] = 1;
for(int j = 1;j <= 100;j++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
}
int main()
{
int k; //歌单总长度
int a; //长度为a的歌
int b; //长度为b的歌
int x; //长度为a的歌有x首
int y; //长度为b的歌有y首
long long ans = 0; //组成歌单的种类数
init();
scanf("%d",&k);
scanf("%d%d%d%d",&a,&x,&b,&y);
for(int i = 0;i <= x;i++)
{
if(i * a <= k && (k - i * a) % b == 0 && (k - i * a) / b <= y) //满足题目的判断条件
{
ans = (ans + (c[x][i] * c[y][(k - i * a) / b]) % mod) % mod;
}
}
printf("%lld\n",ans);
return 0;
}
知识点:
杨辉三角;