矩形覆盖

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:
2*n的大矩形,和n个2*1的小矩形
其中target*2为大矩阵的大小
有以下几种情形:
1. target <= 0 大矩形为<= 2*0,直接return 1;
2. target = 1大矩形为2*1,只有一种摆放方法,return1;
3. target = 2 大矩形为2*2,有两种摆放方法,return2;
4. target = n 分为两步考虑:

第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(target - 1)

这里写图片描述

第一次摆放一块1*2的小矩阵,则摆放方法总共为f(target-2)
因为,摆放了一块1*2的小矩阵(用√√表示),对应下方的1*2(用××表示)摆放方法就确定了,所以为f(targte-2)

这里写图片描述

通过分析就可以得出是斐波那契数列,它的解法在前面都分析过,有递归,非递归和动态规划解法。还有一种效率比较高的矩阵快速幂的解法,可以百度看下。

下面只实现递归和非递归算法:

package cn.yzx.nowcoder;

/**
 * 题目描述
 * 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
 * @author yzx
 *
 */
public class RectCover {
    public static void main(String[] args) {
        int res = new RectCover().RectCover(29);
        System.out.println(res);
    }

    public int RectCover(int target) {
        if(target<=1)
            return 1;
        else if(target == 2)
            return 2;
        else
            return RectCover(target -1)+RectCover(target - 2);
    }
    //非递归
    public int RectCover1(int target) {
        int pre = 1;
        int prePre = 1;
        int res = 0;
        if(target == 0)
            return 0;
        else if(target == 1 || target == 2)
            return 1;
        else{
            for(int i=3;i<=target;i++){
                res = pre + prePre;
                prePre = pre;
                pre = res;
            }
            return res;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值