题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路:
2*n的大矩形,和n个2*1的小矩形
其中target*2为大矩阵的大小
有以下几种情形:
1. target <= 0 大矩形为<= 2*0,直接return 1;
2. target = 1大矩形为2*1,只有一种摆放方法,return1;
3. target = 2 大矩形为2*2,有两种摆放方法,return2;
4. target = n 分为两步考虑:
第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(target - 1)
第一次摆放一块1*2的小矩阵,则摆放方法总共为f(target-2)
因为,摆放了一块1*2的小矩阵(用√√表示),对应下方的1*2(用××表示)摆放方法就确定了,所以为f(targte-2)
通过分析就可以得出是斐波那契数列,它的解法在前面都分析过,有递归,非递归和动态规划解法。还有一种效率比较高的矩阵快速幂的解法,可以百度看下。
下面只实现递归和非递归算法:
package cn.yzx.nowcoder;
/**
* 题目描述
* 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
* @author yzx
*
*/
public class RectCover {
public static void main(String[] args) {
int res = new RectCover().RectCover(29);
System.out.println(res);
}
public int RectCover(int target) {
if(target<=1)
return 1;
else if(target == 2)
return 2;
else
return RectCover(target -1)+RectCover(target - 2);
}
//非递归
public int RectCover1(int target) {
int pre = 1;
int prePre = 1;
int res = 0;
if(target == 0)
return 0;
else if(target == 1 || target == 2)
return 1;
else{
for(int i=3;i<=target;i++){
res = pre + prePre;
prePre = pre;
pre = res;
}
return res;
}
}
}