题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
思路一:
要注意此题的连续不是说一定要从下标0开始,暴力求解,嵌套遍历计算连续长度的值,最后排序比较,有两种算法,试着比较下:
public int FindGreatestSumOfSubArray(int[] array) {
int tmp = 0;
int res = 0;
int max = 0;
for(int k=0 ;k<array.length;k++){
tmp = 0;
for(int i=k;i<array.length;i++){
tmp +=array[i];
}
res = tmp;
for(int i=array.length-1;i>k;i--){
tmp -=array[i];
if(tmp > res){
res = tmp;
}
}
if(k==0) max = res;
if(max<res){
max = res;
}
}
return max;
}
public int FindGreatestSumOfSubArray1(int[] array) {
ArrayList<Integer> resList = new ArrayList<Integer>();
for(int k=0 ;k<array.length;k++){
int sum = 0;
for(int i=k;i<array.length;i++){
sum +=array[i];
resList.add(sum);
}
}
Collections.sort(resList);
return resList.get(resList.size()-1);
}
思路二:
动态规划,也有两种算法描述。
public int FindGreatestSumOfSubArray2(int[] array) {
if (array.length==0 || array==null) {
return 0;
}
int curSum=0;
int greatestSum=0;
for (int i = 0; i < array.length; i++) {
if (curSum<=0) {
curSum=array[i]; //记录当前最大值
}else {
curSum+=array[i]; //当array[i]为正数时,加上之前的最大值并更新最大值。
}
if(i == 0) greatestSum = curSum;
if (curSum>greatestSum) {
greatestSum=curSum;
}
}
return greatestSum;
}
public int FindGreatestSumOfSubArray3(int[] array) {
if(array.length == 0) return 0;
int sum = array[0], tempsum = array[0]; //注意初始值 不能设为0 防止只有负数
for(int i = 1; i < array.length; i++) //从1开始 因为0的情况在初始化时完成了
{
tempsum = (tempsum < 0) ? array[i] : tempsum + array[i];
sum = (tempsum > sum) ? tempsum : sum;
}
return sum;
}