连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?

思路一:
要注意此题的连续不是说一定要从下标0开始,暴力求解,嵌套遍历计算连续长度的值,最后排序比较,有两种算法,试着比较下:

public int FindGreatestSumOfSubArray(int[] array) {
    int tmp = 0;
    int res = 0;
    int max = 0;
    for(int k=0 ;k<array.length;k++){
        tmp = 0;
        for(int i=k;i<array.length;i++){
            tmp +=array[i];
        }
        res = tmp;
        for(int i=array.length-1;i>k;i--){
            tmp -=array[i];
            if(tmp > res){
                res = tmp;
            }
        }
        if(k==0) max = res;
        if(max<res){
            max = res;
        }
    }
    return max;
}

public int FindGreatestSumOfSubArray1(int[] array) {
    ArrayList<Integer> resList = new ArrayList<Integer>();
    for(int k=0 ;k<array.length;k++){
        int sum = 0;
        for(int i=k;i<array.length;i++){
            sum +=array[i];
            resList.add(sum);
        }
    }
    Collections.sort(resList);
    return resList.get(resList.size()-1);
}

思路二:
动态规划,也有两种算法描述。

public int FindGreatestSumOfSubArray2(int[] array) {
       if (array.length==0 || array==null) {
           return 0;
       }
       int curSum=0;
       int greatestSum=0;
       for (int i = 0; i < array.length; i++) {
           if (curSum<=0) {
               curSum=array[i]; //记录当前最大值
           }else {
               curSum+=array[i]; //当array[i]为正数时,加上之前的最大值并更新最大值。
           }
           if(i == 0) greatestSum = curSum;
           if (curSum>greatestSum) {
               greatestSum=curSum; 
           }
       }
       return greatestSum;
}

public int FindGreatestSumOfSubArray3(int[] array) {
    if(array.length == 0) return 0;
       int sum = array[0], tempsum = array[0]; //注意初始值 不能设为0 防止只有负数
       for(int i = 1; i < array.length; i++) //从1开始 因为0的情况在初始化时完成了
       {
           tempsum = (tempsum < 0) ? array[i] : tempsum + array[i];
           sum = (tempsum > sum) ? tempsum : sum;
       }
       return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值