因可以取物体的部分放入,故每次选择价值重量比最高的物体放入,可保证放入的价值一定最大,满足贪婪选择性质和最有子结构性质,故采用贪心算法求解:
1. 根据各个物体的价值p与重量w计算价值重量比v
2. 根据v降序排序
3. 从当前最大的v的开始,判断该物体重量是否超过背包剩余载重
4. 是则放入背包剩余载重量的物体,加上这部分的价值,跳到7
5. 否则将物体完整放入背包,加上物体的价值
6. 若还有物体未放入背包,则跳到3
7. 输出背包中物体的总价值
- #include<iostream>
- #include<algorithm>
- using namespace std;
- #define N 50 // 最多输入物体数
- /***********************
- * 存放背包属性的结构体
- ***********************/
- typedef struct{
- float p; // 物体的价值
- float w; // 物体的重量
- float v; // 物体的价值重量比
- }Object;
- /*******************************
- * 比较函数:按v的递减顺序排序
- *******************************/
- bool compare(Object a, Object b){
- return a.v>b.v;
- }
- /****************************************************************
- * 求解背包问题的贪婪算法
- *
- * 输入:背包载重量M, 存放n个物体属性的数组instance[],物体个数n
- * 输出:n个物体被装入背包的份量x[],背包中物体的最大总价
- ****************************************************************/
- float knapsack_greedy(float m, Object instance[], float x[], int n){
- int i;
- float p = 0; // 总价值初始为0
- /* 初始化 */
- for(i=0; i<n; i++){
- instance[i].v = instance[i].p / instance[i].w; // 计算物体价值重量比
- x[i] = 0; // 默认放入份量为0
- }
- /* 对物体进行排序:按v的递减顺序 */
- sort(instance,instance+n,compare);
- /* 填物过程 */
- for(i=0; i<n; i++){
- if(instance[i].w<=m){ // 若物体重量小于等于剩余载重量
- x[i] = 1; // 将物体全部装入 置x[i]为1
- m -= instance[i].w; // 从剩余载重量中去掉物体的重量
- p += instance[i].p; // 总价值加上物体的完整价值
- }else{ // 若物体重量大于剩余载重量
- x[i] = m / instance[i].w; // 置x[i]为剩余载重量/物体重量:即最大能置入的百分比
- p+= x[i]*instance[i].p; // 总价值加上物体装入部分的价值
- break; // 此时背包已满,可以退出循环
- }
- }
- return p;
- }
- /***********************
- * 打印换行符
- ***********************/
- void printhr(){
- cout<<"------------------------------------------------------------------------"<<endl;
- }
- int main(){
- Object instance[N]; // n个物体的属性
- float x[N]; // n个物体装入背包的份量(0<=x[i]<=1)
- float m; // 背包的最大载重量
- int n; // 物体个数
- int i;
- /* 输入开始 */
- cout<<"请输入背包的载重量:";
- cin>>m;
- cout<<"请输入物体的个数:";
- cin>>n;
- cout<<"请输入物体的价格、重量:"<<endl;
- printhr();
- for(i=0; i<n; i++){
- cout<<"【第"<<(i+1)<<"件物品】";
- cin>>instance[i].p>>instance[i].w;
- printhr();
- }
- /* 输入结束 */
- /* 计算最大价值和各物体装入的重量 */
- float maxv = knapsack_greedy(m, instance, x, n);
- /* 输出开始 */
- cout<<endl<<endl<<"可装入的最大价值是:"<<maxv<<endl;
- printhr();
- cout<<"每个物体各装入:"<<endl;
- printhr();
- for( i=0; i<n; i++){
- cout<<"【第"<<(i+1)<<"件物品】";
- cout<<"价值:"<<instance[i].p<<" 总量:"<<instance[i].w<<" 价值总量比:"<<instance[i].v<<" 放入数量:"<<x[i]*instance[i].w<<endl;
- printhr();
- }
- /* 输出结束 */
- return 0;
- }