机器学习
孙彦辉
站在巨人的肩膀上
展开
-
机器学习发展简史
本文主要参考中科院自动化研究所复杂系统与智能科学实验室王珏研究员《关于机器学习的讨论》,讨论机器学习的描述,理论基础,发展历史以及研究现状。转载 2017-01-16 11:06:42 · 8492 阅读 · 0 评论 -
入门机器学习需要会哪些编程语言?
对“机器学习”跃跃欲试的你,可能也有这样的问题:入门机器学习,我需要会那种(些)酷炫的编程语言呢?别问了,这个问题的“正解”可能会让你大吃一惊。不论你选择哪种语言,只要对这种语言下的机器学习库和工具足够熟悉,语言本身就没有那么重要了。现在对应各种语言的机器学习库层出不穷。根据你在公司中担任的角色和所要完成的任务不同,某些语言和工具可能会比其他的更好用。RR 是一种为专统计计算而设计的语言。它在大规模转载 2017-01-16 11:31:13 · 15059 阅读 · 2 评论 -
国内自然语言处理研究组
学术界清华大学清华大学自然语言处理与人文计算实验室:清华计算机系前院长孙茂松教授是他们的leader 清华大学智能技术与系统国家重点实验室信息检索组 北京大学北京大学计算语言学教育部重点实验室:北大计算机学科比较有实力的一个研究方向之一 北京大学计算机科学技术研究所语言计算与互联网挖掘研究室中科院中科院计算所自然语言处理研究组:尤其专长在机器翻译领域,组长为刘群研究员,大家常使用的中文分词工具I原创 2017-01-19 11:38:10 · 5940 阅读 · 2 评论 -
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)
注:机器学习资料篇目一共500条,篇目二开始更新希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.此外:某些资料在中国访问需要梯子.《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Dee转载 2017-01-19 15:43:31 · 1723 阅读 · 0 评论 -
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
注:机器学习资料篇目一共500条,篇目二开始更新希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.此外:某些资料在中国访问需要梯子.《Image Scaling using Deep Convolutional Neural Networks》介绍:使用卷积神经网络的图像缩放.《Proceedings of The 3转载 2017-01-19 15:45:26 · 967 阅读 · 0 评论 -
从机器学习谈起
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并转载 2017-04-25 16:55:57 · 795 阅读 · 0 评论