Design a data structure that supports the following two operations:
void addWord(word)
bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z or .. A . means it can represent any one letter.
For example:
addWord(“bad”)
addWord(“dad”)
addWord(“mad”)
search(“pad”) -> false
search(“bad”) -> true
search(“.ad”) -> true
search(“b..”) -> true
Note:
You may assume that all words are consist of lowercase letters a-z.
题意:插入和查找word,其中’.’可以代替任何字母。
解题思路:利用map和vector均超时,利用之前已经做过的字典树进行操作。唯一不同是查找的时候遇到’.’的操作。
class TrieNode {
public:
char c;
map<char,TrieNode*> child;
bool ed;
// Initialize your data structure here.
TrieNode(char tc) {
c=tc;
ed=false;
}
TrieNode() {
}
};
class WordDictionary {
public:
WordDictionary()
{
root=new TrieNode();
}
// Adds a word into the data structure.
void addWord(string word) {
int i = 0;
int n = word.length();
TrieNode* rt = root;
while (i < n)
{
map<char, TrieNode*>& mt = rt->child;
if (mt.find(word[i]) != mt.end())
{
rt = mt[word[i]];
}
else
{
rt = new TrieNode(word[i]);
mt[word[i]] = rt;
}
++i;
}
if (rt->ed == false)
{
rt->ed = true;
}
}
// Returns if the word is in the data structure. A word could
// contain the dot character '.' to represent any one letter.
bool search(string word)
{
return search1(root,word);
}
bool search1(TrieNode*root1,string word) {
TrieNode* rt = root1;
int i = 0;
int n = word.length();
while (i < n)
{
map<char, TrieNode*> mt = rt->child;
if ( mt.find(word[i]) != mt.end())
{
rt = mt[word[i]];
++i;
}
else if (word[i] == '.' )
{//遇到'.'时从word的后面在当前节点的所有子节点中继续search,。
string t = word.substr(i + 1, word.length() - i - 1);
auto it = mt.begin();
for (; it != mt.end(); ++it)
{
if (search1(it->second, t))
{
return true;
}
}
return false;//若均未找到则返回false
}
else
{
return false;
}
}
return rt->ed;
}
private:
TrieNode* root;
};
// Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary;
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");