Numpy的切片操作

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/yali_shiduode/article/details/89404109

关于numpy的索引和切片,通过例子学习几种不同的方式

#创建numpy数组
import numpy as np
import pandas as pd

#1.通过列表创建数组

arr_1 = np.array([1,2,5,6,9])
arr_1
array([1, 2, 5, 6, 9])

#2.通过np.arange()创建数组

arr_2 = np.arange(12).reshape(3,4) #3行4列的二维数组
arr_2
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

#3.通过np.random.random()创建0~1之间(不含1)的随机数组

arr_3 = np.random.random(20).reshape(4,5)
arr_3
array([[0.01558721, 0.24702561, 0.79631088, 0.42110593, 0.47293236],
       [0.15767591, 0.22503133, 0.21863252, 0.82128878, 0.08465454],
       [0.32461818, 0.97246333, 0.66797878, 0.79064515, 0.74418028],
       [0.18397425, 0.93740083, 0.90262432, 0.6404219 , 0.9951921 ]])

#4.通过np.random.randint(low,high,size)创建整型随机数据

arr_4 = np.random.randint(low=33,high=100,size=(4,5))
arr_4
array([[73, 79, 56, 86, 56],
       [41, 72, 39, 54, 35],
       [57, 80, 54, 43, 94],
       [88, 86, 39, 61, 61]])

#5.切片操作

arr_4[:,1] #所有行的第1列数据
array([79, 72, 80, 86])
arr_4[2:,3] #获取第2行至最后一行的第3列数据
array([43, 61])
arr_4[:3,1:3] #获取第0行至第3行(不含第3行)的第1列至第三列(不含第3列)的数据
array([[79, 56],
       [72, 39],
       [80, 54]])
展开阅读全文

没有更多推荐了,返回首页