最大公约数gcd.cpp

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yalishiyanzhouyu888/article/details/52841465

【问题描述】
对于一个序列
a a a 1 2 , … n ,定义 fi 表示序列前 i 项的最大公约数。我们认为一个
序列的价值为
1
n
i
i
f
∑=

现在给你一个序列
a a a 1 2 , … n ,你需要把它重新排列,使得序列的价值尽量
大。
【输入格式】
输入文件名为gcd.in。
输入包含多组数据。第一行为一个整数T 表示数据的组数。
每组数据包括两行。
第一行一个正整数 n ,表示序列的长度。
第二行 n 个正整数
a a a 1 2 , … n , ai 表示序列的第 i 项。
【输出格式】
输出文件名为gcd.out。
输出文件包含T 行,每行一个整数,第 i 行表示第 i 组数据的答案。
【输入输出样例1】
gcd.in gcd.out
24
1 2 3 4
3
5 10 15
8
25
见选手目录下的gcd/gcd1.in和gcd/gcd1.ans。
【输入输出样例2】
见选手目录下的gcd/gcd2.in和gcd/gcd2.ans。
【数据规模与约定】
对于10%的数据, 1 9 ≤ ≤ n ;
对于 30%的数据, 1 16 ≤ ≤ n ;
对于 100% 的数据, 1 100000 ≤ ≤ n , 1 100000
≤ ≤ ai , 1 20 ≤ ≤ T 。

题解:
根据前 i 项的 gcd 可以把序列分成若干段。这些 gcd 是递减的。显然
一个数如果能在不改变这些 gcd 值的情况下移到更前面一段去,那答案会更优。
令 f[i]表示填了所有 i 的倍数之后的最优答案,a[i]表示 i 的倍数的个数,枚举 i 的因数并转移,转移式为: f[j]=max(f[j],f[i]+(a[j]-a[i])*j)。

附代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=100000+10;
long long pd[maxn],a[maxn],f[maxn];
inline int read(){
    char c;
    while((c=getchar())>'9' || c<'0');
    int sum=c-'0';
    while((c=getchar())<='9' && c>='0')
        sum=sum*10+c-'0';
    return sum;
}
char s[30];
inline void write(long long x){
    int sum=0,i;
    while(x!=0){
        s[++sum]=x%10+'0';
        x/=10;
    }
    for(i=sum;i>=1;i--)
        putchar(s[i]);
    putchar('\n');
    return;
}
int maxe;
long long ans;
void mem(){
    memset(pd,0,sizeof(pd));
    memset(a,0,sizeof(a));
    memset(f,0,sizeof(f));
    ans=0;
    maxe=0;
}
int main(){
    int i,j,k,n,m;
    freopen("gcd.in","r",stdin);
    freopen("gcd.out","w",stdout);
    int x,y,z;
    int t;
    t=read();
    while(t--){
        mem();
        n=read();
        for(i=1;i<=n;i++){
            x=read();
            pd[x]++;
            maxe=max(x,maxe);
        }
        for(i=maxe;i>=1;i--){
            for(j=i;j<=maxe;j+=i)
                a[i]+=pd[j];
            f[i]=a[i]*i;
        }
        for(i=1;i<=maxe;i++){
            for(j=i<<1;j<=maxe;j+=i)
                f[j]=max(f[j],f[i]+a[j]*(j-i));
            ans=max(f[i],ans);
        }
        write(ans);
    }
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页