
人工智能
大广-全栈开发
已有专业技术人员证书:
软考中级-数据库系统工程师
通信中级-互联网技术方向工程师
文章会再公众号更新 BeAHappyMan
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
部署本地Dify
Dify只是一个dashboard,所以这里的话咱们一般不用使用物理部署了,直接使用docker启动一个即可,所以一定要先确保服务器上有docker环境和docker-compose环境。接下来就是启动Dify了,进入到dify/docker目录下,可以看到有对应的docker-compose.yml文件。本文我们来演示一下Dify的部署安装及结合前面的Qwen2-7b模型进行交互。启动完成之后,使用docker ps可以看到有10个docker实例运行起来。docker的安装可参考:《原创 2025-04-21 17:31:01 · 724 阅读 · 0 评论 -
dify AI的介绍
dify是一个开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。Dify 涵盖了构建生成式 AI 原生应用所需的核心技术栈,开发者可以聚焦于创造应用的核心价值。原创 2025-04-21 17:30:10 · 1520 阅读 · 0 评论 -
python3基础镜像
在Docker中,使用Python 3作为基础镜像(base image)是一种常见的做法,特别是在开发Web应用、数据分析项目或任何需要Python环境的项目时。原创 2025-04-01 10:21:43 · 415 阅读 · 0 评论 -
python中requirements.txt文件的作用及生成和使用方式
使用 pipreqs 可以自动检索到当前项目下的所有组件及其版本,并生成 requirements.txt 文件,极大方便了项目迁移和部署的包管理。requirements.txt 文件是用于记载项目所需要的运行环境依赖,即项目依赖包及其对应版本号的信息列表。方便等环境迁移后,通过命令直接安装。使用pipreqs第三方库。1、安装pipreqs库。2、在当前目录使用生成。原创 2025-04-01 09:31:42 · 1608 阅读 · 0 评论 -
讲解机器学习中的 K-均值聚类算法及其优缺点
K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集中的样本划分为 K 个簇。2. 分配样本:根据每个样本与各个聚类中心的距离,将样本分配到与其最近的聚类中心所对应的簇中。3. 更新聚类中心:重新计算每个簇的中心,即取该簇中所有样本的平均值作为新的聚类中心。1. 初始化:随机选择 K 个样本作为初始的聚类中心。- 对初始聚类中心的选择敏感,可能收敛到局部最优解。- 对非球形簇的数据效果不佳,容易受到异常值的影响。- 需要事先指定簇的个数 K,这通常是难以确定的。- 简单且易于实现。原创 2025-03-31 17:34:14 · 471 阅读 · 0 评论 -
举例说明自然语言处理(NLP)技术
2. 语音识别:NLP技术可以帮助计算机理解和转录语音内容,例如Siri和Alexa等智能助手都是基于语音识别技术的。3. 情感分析:NLP技术可以用来分析文本中的情感倾向,例如在社交媒体上分析用户评论的情感是正面、负面还是中性的。5. 信息抽取:NLP技术可以从大量的文本数据中提取出有用的信息,例如从新闻报道中提取出关键事件和人物。这些只是NLP技术应用的一部分,随着技术的不断进步,NLP在各个领域的应用还将继续扩展和深化。原创 2025-03-31 17:33:23 · 479 阅读 · 0 评论 -
浅谈人工智能在现代科技中的应用和未来发展趋势
人工智能(AI)是一种模拟人类智能行为的技术,通过机器学习、深度学习和大数据分析等方法,使计算机系统能够模拟人类的认知、学习和决策能力。总的来说,人工智能在现代科技中扮演着越来越重要的角色,未来的发展将更多地围绕着智能化、自动化和智能决策方面展开。3. 人工智能伦理和法律问题:随着人工智能在社会生活中的广泛应用,人们对人工智能的伦理、隐私和安全问题越来越关注,未来的发展需要更多关注这些问题。2. 人工智能与物联网的结合:人工智能将与物联网、传感器技术结合,实现更智能、自动化的生活和工作场景。原创 2025-03-31 17:32:36 · 672 阅读 · 0 评论 -
举例说明计算机视觉(CV)技术的优势和挑战
计算机视觉(CV)技术是一种让计算机可以“看”和“理解”世界的技术,它有许多优势和挑战。总的来说,计算机视觉技术在实际应用中有很多优势,但也需要不断面对各种挑战并进行改进和优化。原创 2025-03-31 17:31:53 · 594 阅读 · 0 评论