强连通分量内路径基和环基

本文探讨了在模意义下非简单路径和非简单环中的强连通分量性质,包括路径长度的对称性和环长的特定性质。证明了在强连通分量中,如果存在特定长度的路径或环,那么存在相反长度的路径或相同长度的环,并且所有环长可以通过特定点的环长进行线性组合。此外,文章还提及了最小公倍数在构造环长中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(模意义下&非简单路径&非简单环)

名字是随便取的qwq

强连通分量路径长的性质

property1

如果存在一条从 u u u v v v长为 x x x的路径,就一定存在一条从 v v v u u u长为 − x -x x的路径。

proof

假设存在一条从 v v v u u u长为 y y y的路径,那么就有一条
y + x + y + x + y + ⋯ + x + y = ( M O D − 1 ) × x + M O D × y = − x y + x + y + x + y + \cdots + x + y = (MOD - 1) \times x + MOD \times y = -x y+x+y+x+y++x+y=(MOD1)×x+MOD×y=x
的路径。

强连通分量环长的性质

property2

如果存在一个经过点 a a a长为 x x x的环,就一定存在一个经过点 b b b长为 x x x的环。

proof

假设从 b b b a a a有一条长为 y y y的路径,那么根据property1,存在一条从 a a a b b b长为 − y -y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值