人脸检测开源项目介绍【持续更新】

DeepFace

  1. 介绍:DeepFace是一个轻量级的人脸识别和面部属性分析框架,专为Python设计。它集成了多种前沿的深度学习模型,包括VGG-Face、FaceNet、OpenFace、DeepFace、DeepID、ArcFace、Dlib、SFace和GhostFaceNet等,能够进行年龄、性别、情绪和种族等面部属性的分析。DeepFace的实验显示,这些模型在面部识别任务上的准确率已经超过了人类的97.53%
  2. GitHubhttps://github.com/serengil/deepface
    在这里插入图片描述
    在这里插入图片描述

FaceNet

  1. 介绍:FaceNet是由Google研究团队在2015年提出的一种深度学习人脸识别技术。它的核心思想是使用深度卷积神经网络将人脸图像映射到一个128维的欧几里得空间中,这个空间中同一个人的不同图像会被映射到相近的点,而不同人的图像则会被映射到较远的点。FaceNet通过学习一个映射函数,使得同一个人的人脸图像之间的距离小于不同人之间的距离。FaceNet作为一种革命性的人脸识别技术,通过端到端的深度学习方法和创新的损失函数设计,实现了高精度、高效率的人脸表示学习。随着深度学习技术的不断发展,FaceNet的性能和应用场景还将不断拓展和完善。
  2. GitHubhttps://github.com/davidsandberg/facenet

InsightFace

  1. 介绍:InsightFace是一个开源的2D和3D人脸分析工具箱,主要基于PyTorch和MXNet框架开发。它提供了丰富的算法实现,包括人脸检测、人脸识别和人脸对齐,这些算法都针对训练和部署进行了优化。InsightFace支持多种深度学习模型,如IResNet、MobileFaceNet、InceptionResNet_v2和DenseNet等,并且可以使用MS1M、VGG2和CASIA-WebFace等面部数据集。
  2. GitHubhttps://github.com/deepinsight/insightface

OpenFace

  1. 介绍:OpenFace是一个基于深度神经网络的开源人脸识别工具箱,由卡内基梅隆大学(CMU)的研究团队开发和维护。OpenFace旨在提供一个易于使用的界面,让非专业程序员也能进行面部识别和情感分析的相关研究。它集成了多种先进的计算机视觉算法,能够进行面部关键点检测、头部姿态估计、面部动作单元识别以及视线估计。OpenFace建立在Torch框架之上,这是一个用Lua编写的深度学习库,提供了高效计算和灵活的模型定义。它使用Active Appearance Models (AAMs)技术,结合深度学习模型,实现高精度的实时面部关键点检测和追踪。该项目引入了表情识别功能,能够区分六种基本情绪:高兴、悲伤、惊讶、愤怒、厌恶和中立。
  2. GitHubhttps://github.com/TadasBaltrusaitis/OpenFace

MTCNN

  1. 介绍:MTCNN(Multi-task Cascaded Convolutional Networks)是一种高效且精准的人脸检测算法,它通过构建三个级联的网络结构(P-Net、R-Net、O-Net)实现了从粗到细的人脸检测与关键点定位。
    • P-Net(Proposal Network):作为MTCNN的第一个阶段,P-Net负责快速生成候选的人脸框。它接收输入图像,通过卷积层提取特征,并利用几个简单的卷积层进行人脸分类和边框回归,输出大量的候选框。
    • R-Net(Refine Network):R-Net作为第二个阶段,对P-Net输出的候选框进行进一步筛选和调整。它通过更复杂的网络结构,对候选框进行更加细致的分类和边框回归,去除大部分误检的候选框,并调整剩余候选框的位置和大小。
    • O-Net(Output Network):O-Net是MTCNN的最后一个阶段,也是最复杂的网络。它接收R-Net输出的候选框,进行最终的人脸分类、边框回归以及人脸关键点的定位。O-Net的输出通常用于后续的人脸识别、表情分析等任务。
  2. GitHubhttps://github.com/ipazc/mtcnn

CompreFace

  1. 介绍:CompreFace是一个领先的免费开源人脸识别系统,由Exadel公司开发和维护。以下是CompreFace的一些关键特点和功能:
  1. 开放源代码和易集成:CompreFace是一个免费开源的人脸识别服务,可以轻松集成到任何系统中,无需事先掌握机器学习技能。

  2. REST API:提供REST API用于人脸识别、人脸验证、人脸检测、地标检测、年龄和性别识别,支持在CPU和GPU上运行模型。

  3. Docker部署:CompreFace可以作为docker-compose配置,方便以Docker容器的形式快速部署人脸服务。

  4. 基于深度学习:CompreFace基于深度学习算法,集成了人脸检测、识别、验证以及年龄和性别识别等功能。

  5. 模型支持:支持不同的模型在CPU和GPU上工作,基于最先进的方法和库,如FaceNet和InsightFace。

  6. 用户界面:CompreFace提供了一个用户界面,用于方便的用户角色和访问管理。

  7. 多种识别服务:支持多种人脸识别服务,包括人脸检测、人脸验证、地标检测插件、年龄识别插件、性别识别插件、人脸口罩检测插件和头部姿态插件。

  8. 高准确性:在LFW数据集上达到了99.83%的准确率。

  9. 应用领域广泛:CompreFace可以应用于安全、广告、市场营销、考勤、VIP服务以及酒店、会议和机场登记等多个领域。

  10. 无需AI/ML技能:用户可以轻松创建、控制和测试服务,无需广泛的AI/ML技能。

  1. GitHubhttps://github.com/exadel-inc/CompreFace
代码是调用开源SDk的FaceCore关键代码。附件中有详细的接口调用说明 FaceCore人脸识别开放平台 (SERVICE INTERFACE PLATFORM)是基于人脸检测、比对核心业务技术的服务平台。平台可为外部合作伙伴提供基于高精度人脸识别技术为基础的相关服务,例如Api、人脸识别、数据安全等。作为人脸识别的重要开发途径,FaceCore平台将推动各行各业定制、创新、进化,并最终促成新商业文明生态圈的建立。我们的使命是把人脸识别技术、规范等一系列核心技术基础服务,像水、电、煤一样输送给所有需要的合作伙伴、开发者、社区媒体、安全机构和各行各业。帮助社会各界通过使用此平台获得更丰厚的商业价值。 服务器测试接口: /api/hello/ 服务器测试接口,返回服务器当前时间。 人脸比对、识别接口: /api/facecompare/ 根据参数FaceFeature1,FaceFeature2获取两个人脸的相似度。 /api/facedetectcount/ 根据参数FaceImage,获取图像中的人脸数量。 /api/facedetect/ 根据参数FaceImage,获取图像中的人脸、眼睛位置和特征。 /api/urlfacedetect/ 根据参数Url,获取图像中的人脸、眼睛位置和特征。 人脸存储管理接口: /api/personface/similar/ Method:POST;根据参数Feature人脸特征,返回appkey存储的全部人脸相似度。 /api/personface/getall/ Method:GET;返回appkey存储的全部人脸。 /api/personface/{id} Method:GET;返回指定id人脸详细信息。 /api/personface/ Method:POST;添加一个人脸信息。 /api/personface/ Method:PUT;修改一个人脸信息。 /api/personface/{id} Method:DELETE;删除一个人脸信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值