Hadoop架构梳理和生态圈

本文介绍了Hadoop从1.x到2.x的主要区别,其中2.x将计算和资源调度分离,YARN负责资源调度,MapReduce专注计算。详细探讨了HDFS的NameNode、DataNode和Secondary NameNode的角色,以及YARN的ResourceManager、NodeManager、ApplicationMaster和Container的架构。最后,概述了MapReduce的工作流程,包括Map和Reduce阶段。
摘要由CSDN通过智能技术生成
hadoop 1.x和2.x区别
版本1.x2.x
common组件
hdfs组件
yarn组件没有负责资源调度
map-reduce组件负责计算和资源调度负责计算

1.x中map reduce负责计算和资源调度,而在2.x版本中解耦,yarn负责资源调度,map reduce负责计算

hdfs-Hadoop Distributed File System架构

在这里插入图片描述

1.NameNode(nn):存储文件的元数据,如文件名、文件目录结构、文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等
2.DataNode(dn):在本地文件系统中存储文件块数据,以及块数据的校验和
3.Secondary NameNode(2nn):用来监控hdfs状态的后台辅助程序,每隔一段时间获取HDFS元数据的快照

YARN架构概述

在这里插入图片描述

1.ResourceManager(RM)
处理客户端请求
监控NodeManager
启动或者监控ApplicationMaster
资源的分配和调度
2.NodeManager(NM)
管理单个节点上的资源
处理来自ResourceManager的命令
处理来自ApplicationMaster的命令
3.ApplicationMaster(AM)
负责数据的切分
为应用程序申请资源并分配给内部的任务
任务的监控与容错
4.Container
container是yarn中资源的抽象,它封装了节点上的多维度资源:内存、CPU、硬盘网络等

MapReduce架构

MapReduce分为两个阶段,map和reduce
Map阶段并行处理输入的数据
Reduce阶段是对Map输出的结果进行处理

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值