线性回归假设h(x)=w^T∗x的理解

linear regression hypothesis:
h ( x ) = W T X h(x)=W^TX h(x)=WTX
多元线性回归的表达式:
y ^ = w 1 ∗ x 1 + w 2 ∗ x 2 + . . . + w n x n \hat{y}=w_1*x_1+w_2*x_2+...+w_nx_n y^=w1x1+w2x2+...+wnxn

y ^ = ∑ i = 1 n w i x i \hat{y}=\sum\limits_{i=1}^{n}w_ix_i y^=i=1nwixi

1)向量W =(w1,w2,…,wn), 向量X =(x1,x2,…,xn)
2)转为矩阵表示
W = [ w 1 w 2 . . w n ] W = \begin{bmatrix} w1\\ w2\\ .\\ .\\ wn\end{bmatrix} W= w1w2..wn
X = [ x 1 x 2 . . x n ] X = \begin{bmatrix} x1\\ x2\\ .\\ .\\ xn\end{bmatrix} X= x1x2..xn
将W转置
W T = [ w 1 w 2 . . . w n ] ​​ W^T= \begin{bmatrix} w1&w2&...&wn\\ \end{bmatrix}​​ WT=[w1w2...wn]​​

h ( x ) = W T X = [ w 1 w 2 . . . w n ] ​​ [ x 1 x 2 . . x n ] = [ w 1 ∗ x 1 + w 2 ∗ x 2 + . . . + w n ∗ x n ] h(x)=W^TX = \begin{bmatrix} w1&w2&...&wn\\ \end{bmatrix}​​ \begin{bmatrix} x1\\ x2\\ .\\ .\\ xn\end{bmatrix} = \begin{bmatrix} w1*x1+w2*x2+...+wn*xn\end{bmatrix} h(x)=WTX=[w1w2...wn]​​ x1x2..xn =[w1x1+w2x2+...+wnxn]
以上为个人对 W T X W^TX WTX的理解,如有错误请指正
————————————————
参考:https://blog.csdn.net/qq_42442369/article/details/86425504
https://baike.baidu.com/item/%E5%90%91%E9%87%8F/1396519?fr=ge_ala
https://blog.csdn.net/weixin_43178406/article/details/103729041

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值