python实现语音_梅尔频率倒谱系数(MFCC)_提取

本文介绍了Python中实现梅尔频率倒谱系数(MFCC)的步骤,强调了其在语音识别和声纹识别中的应用。通过讲解关键函数,提供了完整的代码示例,并分享了GitHub资源链接及作者联系方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梅尔频率倒谱系数(MFCC)在语音项目中尤其重要,例如在语音识别,声纹识别等中都有他的身影.具体细节可以参看博客https://www.cnblogs.com/BaroC/p/4283380.html

话不多说,直接上代码.

*******开始讲解几个重要函数,最后呈现完整代码.完整代码也可以到github下载*********************

导入模块

import numpy
from numpy import *
import numpy.linalg as linalg
import scipy.io.wavfile as wavfile

用numpy的numpy.fft.fft进行傅里叶变换,频谱取对数

def extract(self, signal):
    if signal.ndim > 1:
        self.dprint("INFO: Input signal has more than 1 channel; the channels will be averaged.")
        signal = mean(signal, axis=1)
    frames = (len(signal) - self.FRAME_LEN) / self.FRAME_SHIFT + 1
    feature = []
    for f in xrange(frames):
        frame = signal[f * self.FRAME_SHIFT : f * self.FRAME_SHIFT +
                       self.FRAME_LEN] * self.window
        frame[1:] -= frame[:-1] * self.PRE_EMPH
        X = abs(fft.fft(frame, self.FFT_SIZE)[:self.FFT_SIZE / 2 + 1]) ** 2
        X[X < POWER_SPECTRUM_FLOOR] = POWER_SPECTRUM_FLOOR  
        X = dot(self.D, log(dot(self.M, X)))
        feature.append(X)
    feature = row_stack(feature)
    if featu
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值