梅尔频率倒谱系数(MFCC)在语音项目中尤其重要,例如在语音识别,声纹识别等中都有他的身影.具体细节可以参看博客https://www.cnblogs.com/BaroC/p/4283380.html
话不多说,直接上代码.
*******开始讲解几个重要函数,最后呈现完整代码.完整代码也可以到github下载*********************
导入模块
import numpy
from numpy import *
import numpy.linalg as linalg
import scipy.io.wavfile as wavfile
用numpy的numpy.fft.fft进行傅里叶变换,频谱取对数
def extract(self, signal):
if signal.ndim > 1:
self.dprint("INFO: Input signal has more than 1 channel; the channels will be averaged.")
signal = mean(signal, axis=1)
frames = (len(signal) - self.FRAME_LEN) / self.FRAME_SHIFT + 1
feature = []
for f in xrange(frames):
frame = signal[f * self.FRAME_SHIFT : f * self.FRAME_SHIFT +
self.FRAME_LEN] * self.window
frame[1:] -= frame[:-1] * self.PRE_EMPH
X = abs(fft.fft(frame, self.FFT_SIZE)[:self.FFT_SIZE / 2 + 1]) ** 2
X[X < POWER_SPECTRUM_FLOOR] = POWER_SPECTRUM_FLOOR
X = dot(self.D, log(dot(self.M, X)))
feature.append(X)
feature = row_stack(feature)
if featu