题目:给定一个n*m的矩阵,矩阵中元素非负,从左上角到右下角找一条路径,使得路径上元素之和最小,每次只能向右或者向下走一个方格。如下图所示:最短路径是图中绿色部分的元素。
方法一(转换为图中的最短路径):我们可以把矩阵中的每个方格当做图中的一个顶点,相邻的方格之间有一条边,每个方格最多有两条出边,(当前方格到右侧方格有一条出边,当前方格到下侧方格有一条出边)。我们把矩阵中的最短路径转换为图中的最短路径,使用Dijstra算法来做此题,我们再次使用最简单的Dijstra算法,没有进行优化。图中总共有n*m个点,因为每一次都需要找到一个最小值,找最小值得代价为o(n*m),总共需要找o(n*m)个最小值,所以时间复杂度为o(n*n*m*m)。struct Node
{
int val;
int row;
int col;
Node(){}
Node(int v, int r, int c) :val(v), row(r), col(c)
{}
friend bool operator<(const Node &lhs, const Node &rhs);
};
bool operator<(const Node &lhs, const Node &rhs)
{
return lhs.val > rhs.val;
}
struct Vertex
{
int dis;
bool visited;
Vertex(){}
Vertex(int d, bool v) :dis(d), visited(v){}
};
class Solution {
public:
Node findMinVal(vector<vector<Vertex>> ve)
{
Node res = Node(INT_MAX, 0, 0);
for (int i =