- 博客(827)
- 资源 (7)
- 收藏
- 关注
原创 PyTorch随机数控制全指南:从种子设置到状态管理
在深度学习和科学计算中,控制随机性是保证实验结果可复现的关键。PyTorch 提供了多种随机数管理工具,但如何正确使用它们仍是许多开发者容易混淆的问题。本文全面解析 PyTorch 的随机数控制机制,从基础的 torch.seed() 和 torch.manual_seed(),到更底层的 get_rng_state() 和 set_rng_state(),详细说明其作用、使用场景及注意事项。同时,我们也会探讨 CPU 和 GPU(CUDA)的随机状态管理,并提供完整的代码示例,帮助你彻底掌握 PyTorc
2025-05-12 11:45:04
1037
原创 anaconda Jupyter配置多内核和pycharm配置Jupyter
anaconda Jupyter配置多内核和pycharm配置Jupyter
2025-05-12 01:04:09
306
原创 深度学习系统学习系列【8】之设计卷积神经网络架构(Pytorch版本)
这篇文章主要介绍了卷积神经网络(CNN)的设计原理及其在手写字体识别中的应用。文章首先阐述了网络层间的排列规律和CNN各层(输入层、卷积层、池化层、全连接层)的参数设计规范。随后以MNIST手写字体数据库为例,详细讲解了LeNet-5模型的关键特点和PyTorch实现方式,包括项目结构、模型定义、训练过程和单图测试方法。通过可视化分析,展示了网络如何提取手写数字特征,为读者提供了从理论到实践的完整指南。源码地址可供读者参考实现。
2025-05-09 12:29:07
1054
原创 深度学习系统学习系列【7】之卷积神经网络(CNN)
卷积神经网络是计算机视觉天梯的基石。卷积神经网络可以利用多层网络结构自动学习输入数据的深层特征,不同层次的网络可以学习到不同层次的特征。浅层网络层感知区域较小,可以学习到输入数据的局部域特征(如图像物体的颜色、集合形状);深层网络层具有较大的感知域,能够学习输入数据的抽象特征(如图像物体属性、轮廓特点、位置信息)。深层次抽象特征对图像中物体的大小位置和方向等局部域特征敏感度较低,提高了物体的识别率。所以,卷积神经网络常用于图像处理领域。卷积神经网络的三个核心思想是局部感知、权值共享、下采样技术。
2025-05-08 00:53:08
964
原创 常识补充(NVIDIA NVLink技术:打破GPU通信瓶颈的革命性互联技术)
NVLink是NVIDIA开发的一种高速GPU互连技术,旨在替代或补充传统的PCIe连接方式。超高带宽:单链路带宽远超PCIe(NVLink 3.0单通道可达50GB/s)低延迟:直接GPU-GPU通信,减少CPU干预可扩展性:支持多GPU全互联拓扑(如NVIDIA DGX系统的NVSwitch)
2025-05-06 23:54:07
848
原创 深度学习系统学习系列【6】之深度学习技巧
本文主要介绍深度学习中的常用技巧和知识:数据集准备、拓展、处理&网络初始化&过拟合处理方法&训练技巧
2025-05-06 23:45:08
1398
2
原创 深度学习系统学习系列【3】之血液检测项目
通过构建一个3 层的人工神经网络ANN模型对收集到的数据进行训练,得到该医疗数据的分类模型,最后利用新的医疗数据,预测其所属病理分类。
2025-05-05 00:24:47
1041
原创 深度学习系统学习系列【2】之人工神经网络(ANN)
人工神经网络(Artifical Neural Network, ANN )是深度学习的基础。人工神经网络是深度神经网络中最经典,也是最基础的网络模型人工神经网络以其独特的网络结构和处理信息的方法,在自动控制领域、组合优化问题、模式识别、图像处理、自然语言处理等诸多领域,己经取得了辉煌的成绩。
2025-05-03 23:24:03
1497
原创 广义线性模型三剑客:线性回归、逻辑回归与Softmax分类的统一视角
在机器学习的世界里,乍看之下各不相同的算法实际上往往存在着深刻的联系。许多机器学习模型其实属于同一个"模型家族"。今天,我们要探讨的就是这样一个强大的家族——广义线性模型(GLMs)家族中的三位重要成员:线性回归(Linear Regression)、逻辑回归(Logistic Regression)和Softmax分类(Softmax Classification)。
2025-05-03 13:52:26
1674
原创 从广义线性回归推导出Softmax:理解多分类问题的核心
本文将带你从广义线性模型的角度出发,逐步推导出Softmax回归的数学形式,揭示其背后的统计原理,并探讨其实际应用中的关键点。无论你是机器学习初学者还是希望加深理解的实践者,这篇文章都将为你提供有价值的见解。
2025-05-03 13:41:15
994
原创 逻辑回归的多分类实战:以鸢尾花数据集为例
逻辑回归如何通过One-vs-All策略处理多分类问题完整的鸢尾花分类实现流程模型评估与可视化方法。
2025-05-02 14:22:14
1165
2
原创 逻辑回归详解:从数学推导到Python实战
逻辑回归是一种概率分类模型,输出0到1之间的概率值。使用sigmoid函数将线性输出映射到概率空间。通过交叉熵损失函数衡量预测与真实值的差异。使用梯度下降法优化模型参数。可以加入正则化项防止过拟合。在实践中,可以使用scikit-learn等库方便地实现逻辑回归。
2025-05-02 00:27:02
962
原创 Sigmoid函数导数推导详解
首先回顾Sigmoid函数的定义:g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}g(z)=1+e−z1从Sigmoid函数出发:g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}g(z)=1+e−z1令u=1+e−zu = 1 + e^{-z}u=1+e−z,则g(z)=u−1g(z) = u^{-1}g(z)=u−1使用链式法则:dgdz=dgdu⋅dudz=−u−2⋅(−e−z)=e−z(1+e−z)2\frac{dg}{dz} = \fr
2025-05-02 00:02:17
1155
原创 深度学习系统学习系列【1】之基本知识
随着 GPU 的发展, GPU 开始主要为显示图像做优化,在计算上超越通用的 CPU。GPU 作为硬件加速器之一, 通过大量图形处理单元与 CPU协同工作,对深度学习、数据分析,以及大量计算的工程应用进行加速。GPU 的并行架构非常合适深度学习需要高效的矩阵操作和大量的卷积操作。神经网络的特点:具有更多的神经元;的寄存器上存储大量的数据,反复使用卷积操作和矩阵乘法操作,而不用担心运算应度慢的问题。深度神经网络其实是深度学习的基础,深度学习的应用和技术绝大部分都是基于深度神经网络框架。的速度与一个三通道的。
2025-05-01 23:11:13
1010
原创 从线性回归到逻辑回归
逻辑回归算法是基于多元线性回归的算法,逻辑回归是一个分类的算法,逻辑回归算法是基于多元线性回归的算法。逻辑回归是线性的分类器。拓展:基于决策树的一系列算法,基于神经网络的算法等那些是非线性的算法。SVM支持向量机的本质是线性的,但是也可以通过内部的核函数升维来变成非线性的算法。
2025-04-27 12:40:50
982
原创 从伯努利分布到Sigmoid:广义线性模型的核心推导和线性回归的指数族统一视角:从高斯分布到最小二乘法
其中η是自然参数,T(y)是充分统计量,a(η)是累积量函数(保证概率归一化)这正是Sigmoid函数的解析式,它将线性预测值映射为(0,1)的概率。都是通过自然参数η的线性组合建模,再通过连接函数关联到均值。更换指数族成员(如泊松分布)即可处理计数数据等不同任务。伯努利分布 → Logit连接。高斯分布 → 恒等连接。
2025-04-27 09:56:55
705
原创 代码实战保险花销预测
本文介绍了一个完整的机器学习流程项目,重点涵盖了多元线性回归的建模与评估方法。项目详细讲解了特征工程中的多项实用技巧,包括:通过np.log变换使数据符合正态分布、离散型数据的one-hot编码处理、缺失值处理、数据标准化归一化、以及多项式回归升维等关键技术。此外,项目还特别介绍了使用正则化方法提高模型泛化能力的重要技巧。该研究为机器学习实践者提供了一个全面的技术参考,特别是在数据预处理和模型优化方面具有较高的实用价值。
2025-04-21 21:12:53
1114
原创 线性回归之多项式升维
多项式升维(Polynomial Expansion)是线性回归中一种常用的特征工程方法,它通过将原始特征进行多项式组合来扩展特征空间,从而让线性模型能够拟合非线性关系。
2025-04-21 20:44:28
763
原创 基础知识查缺补漏:RMSE和MSE
MSE:衡量预测值与真实值之间差异的平方的平均值,单位是原始数据单位的平方。RMSE:MSE 的平方根,单位与原始数据单位相同,更直观和易于解释。在实际应用中,RMSE通常更受欢迎,因为它与原始数据的单位相同,便于解释和比较。然而,在需要对误差进行平方处理的情况下,MSE也可以提供有用的信息。
2025-04-21 17:51:44
1125
原创 线性回归之正则化(regularization)
还在为模型在训练集上表现完美却在测试集上一塌糊涂而烦恼吗?本文将带你认识机器学习中的"防过拟合神器"——正则化技术。我们将从基础概念出发,逐步深入探讨L1和L2正则化的原理、区别和应用场景,并通过生动有趣的Python代码示例展示它们在实际中的威力。无论你是机器学习新手还是想巩固基础的老手,这篇文章都能让你对正则化有更清晰的认识,并学会如何在项目中灵活运用这些技术。
2025-04-20 23:32:20
932
原创 机器学习中的“三态模型“:过拟合、欠拟合和刚刚好
在机器学习中,模型的表现可以类比为学生学习的状态:有的死记硬背却不会灵活应用(过拟合),有的连基础知识都没掌握(欠拟合),而最理想的是真正理解了知识并能举一反三(刚刚好)。本文将用生动形象的类比和直观的可视化示例,带你彻底理解这三种模型状态的区别、识别方法以及如何达到理想的"刚刚好"状态。读完本文,你将能够像老中医一样,一眼诊断出你的模型是"虚火过旺"还是"气血不足"!
2025-04-20 19:28:22
810
原创 线性回归之归一化(normalization)
文章解析归一化与梯度下降的关系,指出特征量纲差异导致梯度更新失衡(如收敛速度矛盾),而归一化通过优化数据分布(如标准归一化使数据均值为0、标准差为1)提升训练效率与模型精度,并对比最大最小值归一化与标准归一化的机制及适用场景。
2025-04-20 18:19:55
834
原创 服务器架构:SMP、NUMA、MPP及Docker优化指南
理解SMP、NUMA和MPP架构的差异是构建高性能容器化应用的基础。通过合理的Docker配置和架构感知的部署策略,可以显著提升应用程序性能,特别是在大规模部署场景中。本文将详细介绍三种主要的服务器架构:SMP(对称多处理)、NUMA(非统一内存访问)和MPP(大规模并行处理),并探讨Docker容器如何针对这些架构进行优化设置。
2025-04-18 21:35:40
1104
原创 无约束最优化问题的求解算法--梯度下降法(Gradient Descent)
本文系统讲解梯度下降法:从原理、公式推导到三种实现方式(全量/随机/小批量),重点分析学习率设置、全局最优解挑战及鞍点问题。通过对比不同方法的优缺点,提供梯度下降法的完整实现流程和优化策略,帮助读者掌握这一核心优化算法。
2025-04-18 12:15:36
1300
原创 充电宝项目:规则引擎Drools学习
规则引擎,全称为业务规则管理系统,英文名为BRMS(即Business Rule Management System)。规则引擎的主要思想是将应用程序中的业务决策部分分离出来,并使用预定义的语义模块编写业务决策(业务规则),由用户或开发者在需要时进行配置、管理。注意规则引擎并不是一个具体的技术框架,而是指的一类系统,即业务规则管理系统。目前市面上具体的规则引擎产品有:drools、VisualRules、iLog等。
2025-04-17 00:17:29
1024
原创 充电宝项目中的MQTT(轻量高效的物联网通信协议)
EMQX 是一款大规模可弹性伸缩的云原生分布式物联网 MQTT 消息服务器。作为全球最具扩展性的 MQTT 消息服务器,EMQX 提供了高效可靠海量物联网设备连接,能够高性能实时移动与处理消息和事件流数据,帮助您快速构建关键业务的物联网平台与应用。EMQX的docker安装:开始在linux上安装1Panel,然后再应用商店中进行一键安装。
2025-04-16 23:59:42
1348
原创 小谷充电宝项目个人遇到的问题和解决方法
问题一:后端模板导入后,部分依赖无法正常下载问题二:启动找不到主类问题三:前端验证码无法显示问题四:数据库驱动不合适问题五:MongoDB连接失败问题六:ShareUserApplication启动失败问题七:微信登录失败问题八:服务端口占用问题九:进程假死问题十:onMessageCallback未定义问题十一:shareOrderApplication启动报错问题十二:rabbitConnectionFactory创建失败问题十三:share-file模块启动报错连接redis失
2025-04-16 22:49:20
925
原创 小谷充电宝项目概述和环境搭建
共享充电宝是基于若依微服务版本框架开发的一个共享系统,项目包含平台管理端与微信小程序端,是一个前后端分离的项目。共享充电宝分为后台系统和前台微信小程序。其中覆盖了分布式文件系统、高速缓存、消息队列等多种业务场景和技术实现。后台系统功能:(用户登录、系统管理员列表、角色管理、权限规则管理、柜机管理、柜机分类、充电宝管理、…)前台微信小程序功能: (首页、附近门店、门店信息、登录功能、扫码、Mqtt通信、我的订单、微信支付…)
2025-04-15 00:34:00
1006
计算机硬件领域:NUC 10散热改装与机箱安装教程及详细步骤
2025-01-25
macOS系统安装最新版JetBrainsIDEs开发软件集火工具(x86芯片+arm芯片).md
2024-12-24
内存分配算法及其应用研究 - 伙伴系统算法解析
2024-11-23
无线局域网络802.11协议详解及其连接建立方法
2024-11-23
数据结构代码题备考:快速排序与图、树的经典题目解析
2024-10-18
MG-SOFT MIB builder and compile
2023-12-06
NavicatPassword Decryp tools.zip
2023-09-10
Raft算法中文动画演示文件
2023-02-23
springboot-09-swagger.zip
2023-01-28
Spring Boot学习之Shiro源码
2023-01-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人