自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

缘友一世的博客

指尖探索未知境,天道酬勤勇前行

  • 博客(827)
  • 资源 (7)
  • 收藏
  • 关注

原创 深度学习之优化器【从梯度下降到自适应学习率算法】(pytorch版)

深度学习之优化器【从梯度下降到自适应学习率算法】(pytorch版)

2025-05-13 22:42:25 448

原创 Pytorch张量和损失函数

Pytorch张量和损失函数

2025-05-13 19:17:29 521

原创 pytorch 数据预处理和常用工具

pytorch 数据预处理和常用工具

2025-05-13 00:56:09 677

原创 Pytorch常用统计和矩阵运算

Pytorch常用统计和矩阵运算

2025-05-12 22:17:32 596

原创 PyTorch随机数控制全指南:从种子设置到状态管理

在深度学习和科学计算中,控制随机性是保证实验结果可复现的关键。PyTorch 提供了多种随机数管理工具,但如何正确使用它们仍是许多开发者容易混淆的问题。本文全面解析 PyTorch 的随机数控制机制,从基础的 torch.seed() 和 torch.manual_seed(),到更底层的 get_rng_state() 和 set_rng_state(),详细说明其作用、使用场景及注意事项。同时,我们也会探讨 CPU 和 GPU(CUDA)的随机状态管理,并提供完整的代码示例,帮助你彻底掌握 PyTorc

2025-05-12 11:45:04 1037

原创 anaconda Jupyter配置多内核和pycharm配置Jupyter

anaconda Jupyter配置多内核和pycharm配置Jupyter

2025-05-12 01:04:09 306

原创 同一个虚拟环境中conda和pip安装的文件存储位置解析

同一个虚拟环境中conda和pip安装的文件存储位置解析

2025-05-12 00:00:44 567

原创 Anaconda环境中conda与pip命令的区别

Anaconda环境中conda与pip命令的区别

2025-05-11 23:55:03 432

原创 深度学习系统学习系列【8】之设计卷积神经网络架构(Pytorch版本)

这篇文章主要介绍了卷积神经网络(CNN)的设计原理及其在手写字体识别中的应用。文章首先阐述了网络层间的排列规律和CNN各层(输入层、卷积层、池化层、全连接层)的参数设计规范。随后以MNIST手写字体数据库为例,详细讲解了LeNet-5模型的关键特点和PyTorch实现方式,包括项目结构、模型定义、训练过程和单图测试方法。通过可视化分析,展示了网络如何提取手写数字特征,为读者提供了从理论到实践的完整指南。源码地址可供读者参考实现。

2025-05-09 12:29:07 1054

原创 深度学习系统学习系列【7】之卷积神经网络(CNN)

卷积神经网络是计算机视觉天梯的基石。卷积神经网络可以利用多层网络结构自动学习输入数据的深层特征,不同层次的网络可以学习到不同层次的特征。浅层网络层感知区域较小,可以学习到输入数据的局部域特征(如图像物体的颜色、集合形状);深层网络层具有较大的感知域,能够学习输入数据的抽象特征(如图像物体属性、轮廓特点、位置信息)。深层次抽象特征对图像中物体的大小位置和方向等局部域特征敏感度较低,提高了物体的识别率。所以,卷积神经网络常用于图像处理领域。卷积神经网络的三个核心思想是局部感知、权值共享、下采样技术。

2025-05-08 00:53:08 964

原创 常识补漏(GDDR6与HBM2显存深度解析及深度学习入门显卡选购指南)

GDDR6与HBM2显存深度解析及深度学习入门显卡选购指南

2025-05-07 00:34:32 528

原创 常识补充(NVIDIA NVLink技术:打破GPU通信瓶颈的革命性互联技术)

NVLink是NVIDIA开发的一种高速GPU互连技术,旨在替代或补充传统的PCIe连接方式。超高带宽:单链路带宽远超PCIe(NVLink 3.0单通道可达50GB/s)低延迟:直接GPU-GPU通信,减少CPU干预可扩展性:支持多GPU全互联拓扑(如NVIDIA DGX系统的NVSwitch)

2025-05-06 23:54:07 848

原创 深度学习系统学习系列【6】之深度学习技巧

本文主要介绍深度学习中的常用技巧和知识:数据集准备、拓展、处理&网络初始化&过拟合处理方法&训练技巧

2025-05-06 23:45:08 1398 2

原创 深度学习系统学习系列【5】之深度学习基础(激活函数&损失函数&超参数)

深度学习基础(激活函数&损失函数&超参数)

2025-05-06 00:17:37 992

原创 深度学习系统学习系列【4】之反向传播(BP)四个基本公式推导

深度学习系统学习系列【4】之反向传播(BP)四个基本公式推导

2025-05-05 14:32:10 487

原创 深度学习系统学习系列【3】之血液检测项目

通过构建一个3 层的人工神经网络ANN模型对收集到的数据进行训练,得到该医疗数据的分类模型,最后利用新的医疗数据,预测其所属病理分类。

2025-05-05 00:24:47 1041

原创 深度学习系统学习系列【2】之人工神经网络(ANN)

人工神经网络(Artifical Neural Network, ANN )是深度学习的基础。人工神经网络是深度神经网络中最经典,也是最基础的网络模型人工神经网络以其独特的网络结构和处理信息的方法,在自动控制领域、组合优化问题、模式识别、图像处理、自然语言处理等诸多领域,己经取得了辉煌的成绩。

2025-05-03 23:24:03 1497

原创 广义线性模型三剑客:线性回归、逻辑回归与Softmax分类的统一视角

在机器学习的世界里,乍看之下各不相同的算法实际上往往存在着深刻的联系。许多机器学习模型其实属于同一个"模型家族"。今天,我们要探讨的就是这样一个强大的家族——广义线性模型(GLMs)家族中的三位重要成员:线性回归(Linear Regression)、逻辑回归(Logistic Regression)和Softmax分类(Softmax Classification)。

2025-05-03 13:52:26 1674

原创 从广义线性回归推导出Softmax:理解多分类问题的核心

本文将带你从广义线性模型的角度出发,逐步推导出Softmax回归的数学形式,揭示其背后的统计原理,并探讨其实际应用中的关键点。无论你是机器学习初学者还是希望加深理解的实践者,这篇文章都将为你提供有价值的见解。

2025-05-03 13:41:15 994

原创 逻辑回归的多分类实战:以鸢尾花数据集为例

逻辑回归如何通过One-vs-All策略处理多分类问题完整的鸢尾花分类实现流程模型评估与可视化方法。

2025-05-02 14:22:14 1165 2

原创 逻辑回归详解:从数学推导到Python实战

逻辑回归是一种概率分类模型,输出0到1之间的概率值。使用sigmoid函数将线性输出映射到概率空间。通过交叉熵损失函数衡量预测与真实值的差异。使用梯度下降法优化模型参数。可以加入正则化项防止过拟合。在实践中,可以使用scikit-learn等库方便地实现逻辑回归。

2025-05-02 00:27:02 962

原创 Sigmoid函数导数推导详解

首先回顾Sigmoid函数的定义:g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}g(z)=1+e−z1​从Sigmoid函数出发:g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}g(z)=1+e−z1​令u=1+e−zu = 1 + e^{-z}u=1+e−z,则g(z)=u−1g(z) = u^{-1}g(z)=u−1使用链式法则:dgdz=dgdu⋅dudz=−u−2⋅(−e−z)=e−z(1+e−z)2\frac{dg}{dz} = \fr

2025-05-02 00:02:17 1155

原创 深度学习系统学习系列【1】之基本知识

随着 GPU 的发展, GPU 开始主要为显示图像做优化,在计算上超越通用的 CPU。GPU 作为硬件加速器之一, 通过大量图形处理单元与 CPU协同工作,对深度学习、数据分析,以及大量计算的工程应用进行加速。GPU 的并行架构非常合适深度学习需要高效的矩阵操作和大量的卷积操作。神经网络的特点:具有更多的神经元;的寄存器上存储大量的数据,反复使用卷积操作和矩阵乘法操作,而不用担心运算应度慢的问题。深度神经网络其实是深度学习的基础,深度学习的应用和技术绝大部分都是基于深度神经网络框架。的速度与一个三通道的。

2025-05-01 23:11:13 1010

原创 从线性回归到逻辑回归

逻辑回归算法是基于多元线性回归的算法,逻辑回归是一个分类的算法,逻辑回归算法是基于多元线性回归的算法。逻辑回归是线性的分类器。拓展:基于决策树的一系列算法,基于神经网络的算法等那些是非线性的算法。SVM支持向量机的本质是线性的,但是也可以通过内部的核函数升维来变成非线性的算法。

2025-04-27 12:40:50 982

原创 从伯努利分布到Sigmoid:广义线性模型的核心推导和线性回归的指数族统一视角:从高斯分布到最小二乘法

其中η是自然参数,T(y)是充分统计量,a(η)是累积量函数(保证概率归一化)这正是Sigmoid函数的解析式,它将线性预测值映射为(0,1)的概率。都是通过自然参数η的线性组合建模,再通过连接函数关联到均值。更换指数族成员(如泊松分布)即可处理计数数据等不同任务。伯努利分布 → Logit连接。高斯分布 → 恒等连接。

2025-04-27 09:56:55 705

原创 代码实战保险花销预测

本文介绍了一个完整的机器学习流程项目,重点涵盖了多元线性回归的建模与评估方法。项目详细讲解了特征工程中的多项实用技巧,包括:通过np.log变换使数据符合正态分布、离散型数据的one-hot编码处理、缺失值处理、数据标准化归一化、以及多项式回归升维等关键技术。此外,项目还特别介绍了使用正则化方法提高模型泛化能力的重要技巧。该研究为机器学习实践者提供了一个全面的技术参考,特别是在数据预处理和模型优化方面具有较高的实用价值。

2025-04-21 21:12:53 1114

原创 线性回归之多项式升维

多项式升维(Polynomial Expansion)是线性回归中一种常用的特征工程方法,它通过将原始特征进行多项式组合来扩展特征空间,从而让线性模型能够拟合非线性关系。

2025-04-21 20:44:28 763

原创 基础知识查缺补漏:RMSE和MSE

MSE:衡量预测值与真实值之间差异的平方的平均值,单位是原始数据单位的平方。RMSE:MSE 的平方根,单位与原始数据单位相同,更直观和易于解释。在实际应用中,RMSE通常更受欢迎,因为它与原始数据的单位相同,便于解释和比较。然而,在需要对误差进行平方处理的情况下,MSE也可以提供有用的信息。

2025-04-21 17:51:44 1125

原创 线性回归之正则化(regularization)

还在为模型在训练集上表现完美却在测试集上一塌糊涂而烦恼吗?本文将带你认识机器学习中的"防过拟合神器"——正则化技术。我们将从基础概念出发,逐步深入探讨L1和L2正则化的原理、区别和应用场景,并通过生动有趣的Python代码示例展示它们在实际中的威力。无论你是机器学习新手还是想巩固基础的老手,这篇文章都能让你对正则化有更清晰的认识,并学会如何在项目中灵活运用这些技术。

2025-04-20 23:32:20 932

原创 机器学习中的“三态模型“:过拟合、欠拟合和刚刚好

在机器学习中,模型的表现可以类比为学生学习的状态:有的死记硬背却不会灵活应用(过拟合),有的连基础知识都没掌握(欠拟合),而最理想的是真正理解了知识并能举一反三(刚刚好)。本文将用生动形象的类比和直观的可视化示例,带你彻底理解这三种模型状态的区别、识别方法以及如何达到理想的"刚刚好"状态。读完本文,你将能够像老中医一样,一眼诊断出你的模型是"虚火过旺"还是"气血不足"!

2025-04-20 19:28:22 810

原创 线性回归之归一化(normalization)

文章解析归一化与梯度下降的关系,指出特征量纲差异导致梯度更新失衡(如收敛速度矛盾),而归一化通过优化数据分布(如标准归一化使数据均值为0、标准差为1)提升训练效率与模型精度,并对比最大最小值归一化与标准归一化的机制及适用场景。

2025-04-20 18:19:55 834

原创 1panel第三方应用商店(本地商店)配置和使用

1panel第三方应用商店(本地商店)配置和使用。

2025-04-18 22:59:40 888

原创 服务器架构:SMP、NUMA、MPP及Docker优化指南

理解SMP、NUMA和MPP架构的差异是构建高性能容器化应用的基础。通过合理的Docker配置和架构感知的部署策略,可以显著提升应用程序性能,特别是在大规模部署场景中。本文将详细介绍三种主要的服务器架构:SMP(对称多处理)、NUMA(非统一内存访问)和MPP(大规模并行处理),并探讨Docker容器如何针对这些架构进行优化设置。

2025-04-18 21:35:40 1104

原创 无约束最优化问题的求解算法--梯度下降法(Gradient Descent)

本文系统讲解梯度下降法:从原理、公式推导到三种实现方式(全量/随机/小批量),重点分析学习率设置、全局最优解挑战及鞍点问题。通过对比不同方法的优缺点,提供梯度下降法的完整实现流程和优化策略,帮助读者掌握这一核心优化算法。

2025-04-18 12:15:36 1300

原创 充电宝项目:规则引擎Drools学习

规则引擎,全称为业务规则管理系统,英文名为BRMS(即Business Rule Management System)。规则引擎的主要思想是将应用程序中的业务决策部分分离出来,并使用预定义的语义模块编写业务决策(业务规则),由用户或开发者在需要时进行配置、管理。注意规则引擎并不是一个具体的技术框架,而是指的一类系统,即业务规则管理系统。目前市面上具体的规则引擎产品有:drools、VisualRules、iLog等。

2025-04-17 00:17:29 1024

原创 充电宝项目中的MQTT(轻量高效的物联网通信协议)

EMQX 是一款大规模可弹性伸缩的云原生分布式物联网 MQTT 消息服务器。作为全球最具扩展性的 MQTT 消息服务器,EMQX 提供了高效可靠海量物联网设备连接,能够高性能实时移动与处理消息和事件流数据,帮助您快速构建关键业务的物联网平台与应用。EMQX的docker安装:开始在linux上安装1Panel,然后再应用商店中进行一键安装。

2025-04-16 23:59:42 1348

原创 小谷充电宝项目个人遇到的问题和解决方法

问题一:后端模板导入后,部分依赖无法正常下载问题二:启动找不到主类问题三:前端验证码无法显示问题四:数据库驱动不合适问题五:MongoDB连接失败问题六:ShareUserApplication启动失败问题七:微信登录失败问题八:服务端口占用问题九:进程假死问题十:onMessageCallback未定义问题十一:shareOrderApplication启动报错问题十二:rabbitConnectionFactory创建失败问题十三:share-file模块启动报错连接redis失

2025-04-16 22:49:20 925

原创 充电宝柜机模拟器(赛博朋克风格)

充电宝柜机模拟器(赛博朋克风格)

2025-04-16 19:46:33 550

原创 充电宝项目中集成地图地址解析功能梳理

【代码】充电宝项目中集成地图地址解析功能梳理。

2025-04-16 19:28:11 704

原创 小谷充电宝项目概述和环境搭建

共享充电宝是基于若依微服务版本框架开发的一个共享系统,项目包含平台管理端与微信小程序端,是一个前后端分离的项目。共享充电宝分为后台系统和前台微信小程序。其中覆盖了分布式文件系统、高速缓存、消息队列等多种业务场景和技术实现。后台系统功能:(用户登录、系统管理员列表、角色管理、权限规则管理、柜机管理、柜机分类、充电宝管理、…)前台微信小程序功能: (首页、附近门店、门店信息、登录功能、扫码、Mqtt通信、我的订单、微信支付…)

2025-04-15 00:34:00 1006

计算机硬件领域:NUC 10散热改装与机箱安装教程及详细步骤

内容概要:本文档详述了NUC 10微型主机的散热升级及其机箱的安装流程。分为若干部分,逐一介绍了从准备工作、拆机技巧、各个硬件组件的精细组装(比如主板、硬盘、WiFi天线等)直到最终进行性能测试的每一个环节,并给予了一系列操作建议,以保障DIY过程的安全性和高效性。特别是对一些容易被忽视的小细节,进行了细致入微地讲解。 适用人群:本指南非常适合有一定动手能力并计划自行升级散热系统的NUC迷你电脑用户或者想要深入理解硬件安装的爱好者们。 使用场景及目标:适用于希望改善原有机器散热效能的人士,通过本教程可以达到增强散热的效果,提高设备使用寿命的目的;对于打算深入研究计算机内部构造和技术实现的人来说也是一个很好的参考资料。 其他说明:考虑到实际操作中存在的潜在风险,作者还强调了预防措施的重要性,例如避免过度用力以及确保静电消除等方面的要求。此外,文中提供了大量的提示帮助初学者避开常见错误点,并且给出解决问题的方法指引(如遇困难联系管理员支持)。同时附上了多处警告,提醒读者严格遵循指导手册以免因不当的操作引发故障乃至永久性损害。

2025-01-25

NUC 10散热改装及机箱安装教程.pptx

NUC 10散热改装及机箱安装教程

2025-01-25

iShot Pro 2.5.8.dmg

iShot Pro 2.5.8适用Macos15以上(2.4.9以及其他版本在m4机器上无法正常使用)

2025-01-24

Parallels Desktop Activation Tool

Parallels Desktop Activation Tool

2024-12-24

macOS系统安装最新版JetBrainsIDEs开发软件集火工具(x86芯片+arm芯片).md

macOS系统安装最新版JetBrainsIDEs开发软件集火工具(x86芯片+arm芯片)

2024-12-24

内存分配算法及其应用研究 - 伙伴系统算法解析

内容概要:本文档深入探讨了几种常见的内存分配算法及其应用场景,尤其是针对伙伴系统的原理进行了详细介绍。文中提到,伙伴算法能够有效地管理和合并空闲分区,避免内部碎片的发生,适用于动态内存管理系统。文档通过具体案例展示了不同大小的内存块在伙伴算法下是如何分配和回收的,并解释了为什么这种算法能够提高内存利用率。 适用人群:操作系统课程学生、IT从业者及相关领域的研究者。 使用场景及目标:理解和掌握内存管理机制中的关键技术——伙伴系统算法;学习和应用该算法来优化系统的内存使用。 其他说明:文中提供了大量图表辅助理解各个阶段的内存状态变化,并附带了相关练习题帮助读者巩固知识点。

2024-11-23

无线局域网络802.11协议详解及其连接建立方法

内容概要:本文深入解析了802.11无线局域网络的工作原理、可靠性的保障机制、物理层常见无线局域网速率、以及连接建立的方法。详细解释了分布式协调功能(DCF)、点协调功能(PCF)的工作方式,以及信道争用的具体步骤,其中包括短帧间隔SIFS、分布协调功能帧间隔DIFS的概念。同时探讨了不同条件下CSMA/CA协议的运行机制和虚拟载波监听的实现方法。最后介绍了RTS/CTS信道预约的功能和数据帧地址的相关细节。 适合人群:计算机网络及相关领域的研究人员和技术工作者,尤其是对802.11无线局域网络技术感兴趣的初学者。 使用场景及目标:用于深入了解802.11无线局域网络的标准和工作机制,帮助解决实际部署和应用过程中遇到的技术难题。 其他说明:该文档提供了大量的图表和具体的数据,便于读者更好地理解和掌握相关内容。

2024-11-23

pandoc-3.5-x86-64-macOS .pkg

pandoc-3.5-x86_64-macOS

2024-10-30

数据结构代码题备考:快速排序与图、树的经典题目解析

内容概要:本文档《数据结构代码题备考.pdf》涵盖了多类数据结构相关的考试题目及其解答方法,包括快速排序(含具体算法实现与多个历年真题案例)、二路归并排序、链表、图的表示形式(邻接矩阵和邻接表)以及多种关于二叉树的问题解析(如前中后序遍历、层序遍历、计算高度、宽度、权重路径长度WPL等)。每部分内容不仅提供了基础的概念介绍,还有具体的代码示例和实际操作建议。 适用人群:主要适用于正在准备计算机相关专业研究生入学考试的学生或希望通过提升数据结构方面技能以改善编程能力的学习者。 使用场景及目标:可用于备考复习阶段对数据结构典型题目类型的集中训练;也可作为日常学习中深入理解和掌握特定知识点(比如排序算法、图论基础、二叉树特性等)的实际参考资料。

2024-10-18

考研408:操作系统PV强化笔记

操作系统PV强化笔记(自用整理)

2024-10-17

Xmind 24.04.05171.dmg

Xmind Mac Pro完整功能(破街)版

2024-09-14

rk3566 Openwrt刷机bootloader+镜像+工具.zip

rk3566 Openwrt刷机bootloader+镜像+工具.zip【真实有效的资源】

2024-08-30

OceanbaseV4集合版.pdf

OceanbaseV4集合版.pdf

2024-08-24

通信原理练习题解析(详细版).html

通信原理练习题解析(详细版).html

2024-07-04

通信原理速成特供版.pdf

通信原理速成特供版.pdf

2024-07-03

网络信息安全思维导图(特战速成版).pdf

网络信息安全思维导图(特战速成版),助力每一个不挂的梦想

2024-06-29

通信原理速成资料葵花宝典

通信原理速成.zip更适合河带软院宝宝体制的速成葵花宝典

2024-06-21

GCeasy-report-metaspace-oomerror.pdf

gceasy 元空间内泄露导致Full GC日志分析报告

2024-03-10

GCeasy-report-test.pdf

GCeasy 连续full gc日志gc报告

2024-03-10

离散数学期末10小时冲刺突击

离散数学期末冲刺突击10小时速成

2024-03-06

MG-SOFT MIB builder and compile

MG-SOFT MIB Builder是一种用于管理网络管理信息库(MIB)文件的工具,它提供了一个直观的图形用户界面(GUI),使您能够创建、编辑和编译MIB文件。MIB Builder通过简化和自动化MIB文件的开发过程,帮助网络管理员和开发人员更高效地创建和维护网络管理应用程序。 MIB Builder支持SNMP(Simple Network Management Protocol)标准,该协议用于网络设备的监控和管理。SNMP使用MIB文件来定义网络设备上的管理对象,并通过网络进行交互。MIB Builder允许您创建自定义MIB文件,以描述特定设备或系统的管理信息。这些MIB文件包含对象标识符(OID)、对象类型、访问权限和其他相关属性。 使用MIB Builder,您可以通过图形界面轻松地创建和定义MIB文件中的每个对象。您可以为每个对象指定名称、OID、数据类型、语义、访问权限和默认值等属性。MIB Builder还提供了一些预定义的对象类型和常用的SNMPv2数据类型,使您能够更快地构建MIB文件。 在MIB Builder中,您可以使用树形结构组织和管理MIB

2023-12-06

NavicatPassword Decryp tools.zip

NavicatPassword Decryp tools.zip 解密Navicat已连接数据库的密码【懒人专用】

2023-09-10

Raft算法中文动画演示文件

Raft 是一种为了管理复制日志的一致性算法。它提供了和 Paxos 算法相同的功能和性能,但是它的算法结构和 Paxos 不同,使得 Raft 算法更加容易理解并且更容易构建实际的系统。为了提升可理解性,Raft 将一致性算法分解成了几个关键模块,如领导人选举、日志复制。这个演示动画就是为了方便理解这几个关键模块而设计的。Raft算法中文动画演示文件

2023-02-23

springboot-09-swagger.zip

Spring Boot之Swagger整合学习代码! swagger是一款可以根据resutful风格生成的生成的接口开发文档,并且支持做测试的一款中间软件。 Swagger是一款RESTFUL接口的文档在线自动生成+功能测试功能软件。 Swagger是一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务。 目标:使客户端和文件系统作为服务器以同样的速度来更新文件的方法,参数和模型紧密集成到服务器。

2023-01-28

Spring Boot学习之Shiro源码

Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】 Spring Boot学习之Shiro源码【学习狂神说,自己手动书写,可以实现正常所需的功能】

2023-01-27

snake项目源码+素材

java基础版贪吃蛇项目源码和素材内容,有助于小伙伴练习的纠错

2022-12-31

作业1-第1章绪论课后练习题目.doc

经典数据库系统概论第1章课后练习题目

2022-11-04

啊哈算法-思维导图图片

算法思维导图

2022-02-17

day08(CSS06-定位+装饰)v1.0.pdf

day08(CSS06-定位+装饰)v1.0.pdf

2022-02-17

day06(CSS04-浮动)v1.0.pdf

day06(CSS04-浮动)v1.0.pdf

2022-02-17

day05(CSS03-盒子模型)v1.0.pdf

day05(CSS03-盒子模型)v1.0.pdf

2022-02-17

day02(html02-基础)v2.3.pdf

day02(html02-基础)v2.3.pdf

2022-02-14

html5+css3笔记资料

html5+css3笔记资料

2022-02-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除