数学建模
Junxian_abc
这个作者很懒,什么都没留下…
展开
-
指定x为整数的整数规划
就跟linprog一样,只不过多了个intcon罢了,而这个intcon可以理解为(当然是我自己的理解与全世界都无关)int count, 也就是哪个x是整数。其他具体形同linprog,当然除了等于号左边有点不同。对于指定x为整数的整数规划,使用的是intlinprog函数,该函数也就是在线性规划函数linprog的基础上加了个int,这个Int的含义也就是指定x为整数(不是所有的整数的意思)。其中的b的意思,就是bin,二进制,这对于我这个搞嵌入式的人来说太熟悉不过了。夜深人静,再写一篇博客。转载 2023-05-23 00:26:42 · 174 阅读 · 2 评论 -
数学建模之分枝定界法
也就是说,对于两个多个小数解,先将第一个划定为整数,当然这个整数肯定有不止一个限定办法,然后再对第二个限定为整数,以此类推知道第n个,最后求出符合要求的整数解即可。今天学习了分枝定界法,它是整数规划的其中一种方法,其实也就是在原先线性规划的基础上,对于非整数解的再划分。原创 2023-05-22 12:21:54 · 152 阅读 · 1 评论 -
数学建模中的线性规划
今天我学习到了线性规划,一开始觉得挺难的,但是到了后面反而觉得,其实不难,理解了思想就是照着代码抄了(哈哈哈哈哈虽然人家明确说了不准照着抄)。可以看到,先将之前的变量清除掉,然后输入需要求解的最大值用c矩阵表示,用aeq和beq来表示等式,eq的意思就是equal(相等)。可以看到我的best跟答案上的best没有区别嘿嘿,结果正确(吓死我了我看走眼了还以为我写错了呢),over!今天我跟着川川菜鸟学习了数学建模,虽然平常主要是在做嵌入式方面的东西,但我还是觉得数学建模有着非常重大的意义。原创 2023-05-22 09:17:47 · 79 阅读 · 2 评论