快速排序算法是基于分治策略的另一个排序算法。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数,记为x。
2.分区过程,将不小于x的数全放到它的右边,不大于x的数全放到它的左边。(这样key的位置左边的没有大于key的,右边的没有小于key的,只需对左右区间排序即可)
3.再对左右区间重复第二步,直到各区间只有一个数
快排目前有两类实现算法,第一种是标准算法,第二种是两头交换法。总的思想与上面三步一样,在细节处理上有一些差异。
标准算法思想及实现
标准算算法采用的思想是挖坑填坑的思想:
以一个数组作为示例,取区间第一个数为基准数。
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
72 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 48 | 85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 88 | 85 |
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 42 | 60 | 72 | 83 | 73 | 88 | 85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
用列表推导式和递归的思想来实现快排如下:
def func(l):
if len(l) < 2:return l
k = l[0]
low = [i for i in l if i < k]
height = [i for i in l if i > k]
return func(low) + [k] + func(height)
if __name__ == '__main__':
l = [2, 4, 5, 3, 9, 7]print(func(l))
用循环和递归思想来实现快排:
import random as R
def quick_sort(lst):
qsort_rec(lst, 0, len(lst) - 1)
def qsort_rec(lst, l, r):
if l > r:
return
i = l
j = r
temp = lst[i] # temp为枢纽变量
while i < j: # 找到temp的最终位置
while i < j and lst[j] >= temp: # 从右往左找到第一个比temp小的数
j -= 1
if i < j: # 找到比temp小的数,lst[j]往左移,右边出现空位,i+1开始找比temp大的数
lst[i] = lst[j]
i += 1
while i < j and lst[i] <= temp: # 从左往右找到第一个比temp大的数
i += 1
if i < j:
lst[j] = lst[i] # 找到了比temp大的数,lst[i]移动到右边,左边出现空位,j-1开始找比temp小的数
j -= 1
lst[i] = temp # temp放入最终的位置
# print(l)
qsort_rec(lst, l, i - 1) # 递归调用左半区间
qsort_rec(lst, i + 1, r) # 递归调用右半区间
L1 = [x for x in range(1000)]
L = R.sample(L1, 100)
print('这是排序前的数列', L)
quick_sort(L)
print('这是排序后的数列', L)