算法---快排

快速排序算法是基于分治策略的另一个排序算法。

该方法的基本思想是:

1.先从数列中取出一个数作为基准数,记为x。

2.分区过程,将不小于x的数全放到它的右边,不大于x的数全放到它的左边。(这样key的位置左边的没有大于key的,右边的没有小于key的,只需对左右区间排序即可)

3.再对左右区间重复第二步,直到各区间只有一个数

快排目前有两类实现算法,第一种是标准算法,第二种是两头交换法。总的思想与上面三步一样,在细节处理上有一些差异。

标准算法思想及实现

标准算算法采用的思想是挖坑填坑的思想:

以一个数组作为示例,取区间第一个数为基准数。

0

1

2

3

4

5

6

7

8

9

72

6

57

88

60

42

83

73

48

85

初始时,i = 0;  j = 9;   X = a[i] = 72

由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。

从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++;  这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;

 数组变为:

0

1

2

3

4

5

6

7

8

9

48

6

57

88

60

42

83

73

88

85

 i = 3;   j = 7;   X=72

再重复上面的步骤,先从后向前找,再从前向后找

从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;

从i开始向后找,当i=5时,由于i==j退出。

此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。

 数组变为:

0

1

2

3

4

5

6

7

8

9

48

6

57

42

60

72

83

73

88

85

可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。

对挖坑填数进行总结

1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。

2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。

3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。

4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。

用列表推导式和递归的思想来实现快排如下:

def func(l):

    if len(l) < 2:
        return l
    k = l[0]
    low = [i for i in l if i < k]
    height = [i for i in l if i > k]

    return func(low) + [k] + func(height)


if __name__ == '__main__':

    l = [2, 4, 5, 3, 9, 7]
    print(func(l))

用循环和递归思想来实现快排:

import random as R

def quick_sort(lst):
    qsort_rec(lst, 0, len(lst) - 1)

def qsort_rec(lst, l, r):
    if l > r:
        return
    i = l
    j = r
    temp = lst[i]  # temp为枢纽变量
    while i < j:  # 找到temp的最终位置
        while i < j and lst[j] >= temp:  # 从右往左找到第一个比temp小的数
            j -= 1
        if i < j:  # 找到比temp小的数,lst[j]往左移,右边出现空位,i+1开始找比temp大的数
            lst[i] = lst[j]
            i += 1
        while i < j and lst[i] <= temp:  # 从左往右找到第一个比temp大的数
            i += 1
        if i < j:
            lst[j] = lst[i]  # 找到了比temp大的数,lst[i]移动到右边,左边出现空位,j-1开始找比temp小的数
            j -= 1
    lst[i] = temp  # temp放入最终的位置
    # print(l)

    qsort_rec(lst, l, i - 1)  # 递归调用左半区间

    qsort_rec(lst, i + 1, r)  # 递归调用右半区间


L1 = [x for x in range(1000)]
L = R.sample(L1, 100)
print('这是排序前的数列', L)
quick_sort(L)
print('这是排序后的数列', L)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值