度量学习与聚类

 一个完整的视觉任务往往包括两个步骤,特征提取和度量学习。

   传统的方法特征是按照某种设计方法进行提取得到的,不需要学习参数就可以提取;

   深度网络提取特征,就是特征提取器,需要的参数可以根据我们的目标进行调整。

(1)特征提取

   有传统的特征提取设计方法,比如LBP,HOG等;

   利用深度网络提取特征?其中包含非常多的学习参数,包括各个层的权重参数。

   

   那么如何得到这些参数,就是设计一个目标函数,这个目标函数衡量得到的特征与想要达到效果的差距。我们最小化这个差距损失,就能得到相关的参数。

   那么如何进行比较? 这时候一种好的度量思想就显得非常关键了。

(2)度量学习,或者是相似性学习

   是希望学习一个距离度量,能够使得同类样本之间距离小,不同类样本之间距离大。这个过程就能够使得损失函数最小。

   上面的这个目标包括两个方面,一个是类内紧凑,类间分散。


   a .传统的度量学习方法

   大多是基于不同的任务,比如行人再识别,分类,图像检索,人脸验证/识别,利用传统方法提取的特征,学习一个与任务相关的目标函数,目标函数是为了调整距离度量的参数。

 马氏距离: D^2 &#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值