一个完整的视觉任务往往包括两个步骤,特征提取和度量学习。
传统的方法特征是按照某种设计方法进行提取得到的,不需要学习参数就可以提取;
深度网络提取特征,就是特征提取器,需要的参数可以根据我们的目标进行调整。
(1)特征提取
有传统的特征提取设计方法,比如LBP,HOG等;
利用深度网络提取特征?其中包含非常多的学习参数,包括各个层的权重参数。
那么如何得到这些参数,就是设计一个目标函数,这个目标函数衡量得到的特征与想要达到效果的差距。我们最小化这个差距损失,就能得到相关的参数。
那么如何进行比较? 这时候一种好的度量思想就显得非常关键了。
(2)度量学习,或者是相似性学习
是希望学习一个距离度量,能够使得同类样本之间距离小,不同类样本之间距离大。这个过程就能够使得损失函数最小。
上面的这个目标包括两个方面,一个是类内紧凑,类间分散。
a .传统的度量学习方法
大多是基于不同的任务,比如行人再识别,分类,图像检索,人脸验证/识别,利用传统方法提取的特征,学习一个与任务相关的目标函数,目标函数是为了调整距离度量的参数。
马氏距离: D^2 &#