组合数学,递推
很多组合数的求解都是递推方法解的,多做些题目,涨涨姿势……
:i-1个人把j个rank占满了,第i个人有j种rank,所以乘以j
:i-1个人把j-1个rank占满了,第i个人随便插入j-1个rank中的方案有j种
组合数很大,用java大数给过的……
import java.util.*;
import java.math.*;
class Main {
static public void main(String[] args) {
Scanner cin = new Scanner(System.in);
BigInteger[][] F = new BigInteger[201][201];
BigInteger fac = BigInteger.ONE;
for (int i=1; i<201; i++) {
F[i][1] = BigInteger.ONE;
fac = fac.multiply(BigInteger.valueOf(i));
F[i][i] = fac;
}
for (int i=1; i<201; i++) {
for (int j=2; j<i; j++) {
F[i][j] = F[i-1][j].add(F[i-1][j-1]).multiply(BigInteger.valueOf(j));
}
}
BigInteger sum;
int n;
while (cin.hasNextInt()) {
n = cin.nextInt();
if (n < 0) break;
sum = BigInteger.ONE;
for (int i=2; i<=n; i++) sum = sum.add(F[n][i]);
System.out.println(sum);
}
}
}
话说,我又用python写了一个版本。呵呵。
F = [[1]*(i+1) for i in range(0, 201)]
fac = 1
for i in range(1, 201):
fac = fac * i
F[i][i] = fac
for j in range(2, i):
F[i][j] = (F[i-1][j] + F[i-1][j-1])*j
def S(n): return sum(x for x in F[n]) - 1
n = int(raw_input())
while n > 0:
print S(n)
n = int(raw_input())