ST表

ST表用于处理区间最值问题,时间复杂度可以处理到O(nlogn),用mn[i][j]表示从j到j+2^i-1的最小值,长度为2^i。j到j+2^i-1的长度为2^i,那么一半的长度就等于2^(i-1),前半段的状态表示为mn[i-1][j],后半段的长度也为2^(i-1),后半段的状态表示为mn[i-1][j+2^(i-1)].

综上可得:
mn[i][j]=min(mn[i-1][j],mn[i-1][j+2^(i-1)].


#include<cstdio>
#include<algorithm>
using namespace std;
int a[100100];
int d[100100][110]; 
int n,m;
void rmq(){
    for(int i=1;i<=m;++i)
       d[i][0]=a[i];
    for(int j=1; (1<<j) <=m;++j)
      for(int i=1; i+ (1<<j) -1<=m;++i)
         d[i][j]=min(d[i][j-1],d[i+( 1<<(j-1) )][j-1]);
}
int findit(int l,int r){
    int kk=0;
    while(  ( 1<<(kk+1) )<=r-l+1)  kk++;
    return min(d[l][kk],d[r-(1<<kk)+1][kk]);
}
int main(){
    scanf("%d",&m);
    for(int i=1;i<=m;++i)
       scanf("%d",&a[i]);
    rmq();
    int qq,pp;
    scanf("%d%d",&qq,&pp);
    printf("%d",findit(qq,pp));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值