内容分发平台个性化推荐系统经验简单总结

本文总结了内容分发平台中的推荐系统经验,包括基于内容、协同过滤和关联规则的推荐算法,以及推荐系统架构的离线和在线部分。通过多种算法融合,并考虑商业目标和用户意图,实现精准推荐,提升用户体验和转化率。
摘要由CSDN通过智能技术生成

推荐在电商和互联网应用中已经应用的非常广泛,相比于根据query进行主动的搜索,推荐是更加被动的由系统自动推出商品给用户。搜索的意图比较明显,直接由query给出,而推荐需要计算猜测用户的意图,根据用户历史数据和当前行为,基于各种模型推荐合适的商品,提升用户体验,提高转化率。不过近些年来,搜索和推荐在底层模型和技术方面越来越趋于融合,利用机器学习的方式来改进搜索和推荐的质量,像搜索排序LTR等等。

推荐系统需要考虑用户、平台、内容提供方之间的共赢,推荐系统可以增加长尾销售能力,增加用户粘性和提高用户体验,提高转化率以及商业收入。

先说一下在我们应用内容分发平台中几种推荐算法:

基于内容Content-based的推荐,在内容分发平台中,利用用户画像中的用户-分类兴趣和分类-应用的矩阵向量进行乘法操作,得出应用打分排名进行推荐,用于解决应用的冷启动和用户行为数据稀疏问题。这种方式问题在于,对于物品对应分类比重需要人工的来进行指定,存在人为方面的因素,很难把控,在推荐的精度方面存在问题。

人工对应于的分类进行标注,难免有缺陷,对应用的内容主题相似度建模,为用户推荐和之前有过行为的应用的主题相似的应用。

在内容推荐中,还有一种是对应用进行打标签Tag,结合用户画像中的标签,通过内容的匹配算法,推荐应用给用户。

基于协同过滤的推荐,为了增加应用推荐的新颖性,利用用户的历史行为数据,进行基于Item的协同过滤推荐,该推荐算法需要离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值