梳理一下流式处理、实时计算、Add-hoc、离线计算、实时查询等区别

流式处理、实时计算、Add-hoc、离线计算、实时查询 这几个概念在数据处理中经常提高,这里简单的梳理一下他们的区别。

流处理、实时计算属于一类的,即计算在数据变化时,都是在数据的计算实时性要求比较高的场景,能够实时的响应结果,一般在秒级,Yahoo的S4,twiter的storm都属于流处理和实时计算一类的。

Add-hoc和实时查询都计算在query时,实时查询是响应可能千变万化的结果,无法事先通过枚举得到并存储起来,需要根据用户输入的不同实时查询出不同的响应,对实时性要求比较高,比如hbase,内存数据库的查询redis、mongodb等;Add-hoc属于对实时性要求不高的场景。Add-hoc是针对各种临时的、自定义的需求采取的解决方案,比如hive,需求是不确定的,可以通过编写sql来应对各种问题;最近出现的基于hadoop的实时查询Impala,解决了实时性的要求,比hive效率。

离线计算一般是批量处理数据库的过程,比如利用hadoop的mapreduce;内存计算spark类似于mapreduce, 不过是数据是放在在内存中,效率比较高。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值