自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 资源 (4)
  • 收藏
  • 关注

原创 Python 中整数与浮点数在数字非常大时,可能会溢出

问题涉及 Python 中整数与浮点数在计算机中的表示方式,特别是当数字非常大时,可能会发生的溢出问题。

2024-10-20 12:35:01 279

原创 数学_笔记

数学与许多其他学科有密切联系,如物理学、工程学、计算机科学、生物学、经济学和社会科学等。数学的方法和思想被广泛应用于这些领域,促进了科学技术的发展。通过这些分支的分类和解释,可以更好地了解数学的广泛应用和丰富内涵。每个分支都有其独特的研究对象和方法,共同构成了数学这一庞大的科学体系。

2024-06-18 08:18:39 275

原创 Telegram APIs

暂时不用。

2024-05-24 10:57:28 1111

原创 flask_postman_使用过程

允许开发人员测试、记录和共享 API(应用程序编程接口)也就是所谓的HTTP客户端,指能够发送HTTP请求并接收HTTP响应的软件或库。HTTP(HyperText Transfer Protocol)是用于在客户端和服务器之间传输数据的协议。HTTP客户端可以是浏览器、命令行工具(如curl)、专门的应用程序(如postman),或者编程语言中的库(如Python的requests库)。

2024-05-17 08:42:59 759

原创 手机发送指令,让电脑运行Py文件(描述通俗小白看)

通过即时通讯工具发送指令给电脑,让其运行指定的Python脚本。

2024-05-17 04:04:47 916

原创 pandas_EMA指数移动平均_扩张窗口

计算它的扩张窗口的指数平均值。

2024-01-17 06:53:27 968

原创 分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点,还应掌握数据分布的形态。描述数据分布形态的度量有偏度系数和峰度系数,其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。峰度系数反映分布峰的尖峭程度的重要指标.当峰度系数大于0时,两侧极端数据较多;当峰度系数小于0时,两侧极端数据较少。

2024-01-15 04:50:44 839 1

原创 Python exec 命令在函数内执行无效,已解决

看了很多文章,有很多介绍的很详细。但一直都不能正确使用,总是出现这样那样的问题。但学到了很多名词和描述。继续和AI对话过程中,找到了解决方案。这里只针对个人问题做一个记录。npz_data是一个字典,方案2原因:由于它在函数内,所以在exec函数里添加globals(),也是错的。但在此基础上,问了AI几个问题,就得到了正确方案。

2024-01-10 22:44:18 809

原创 numpy/np中 浮点数转换为整数的问题

当你执行 a.astype(int) 时,这些浮点数被转换为整数。由于浮点数2.0、4.0、6.0和8.0转换为整数时,小数部分都被截断,所以结果是 [1, 3, 5, 7]。这是因为在Python中,浮点数转换为整数时,小数部分会被截断,而不是四舍五入。数组 a 是 [2., 4., 6., 8.],这些都是浮点数。

2024-01-03 00:27:45 897

原创 逻辑运算符——and和&的区别

18 & True,结果是018 and True,结果是True。

2024-01-01 23:31:38 1365

原创 替代for循环的numpy功能_杂记

如果您的目标是避免Python的原生循环以提高性能,同时又不希望代码过于复杂,那么使用numpy.vectorize可能是一个折衷方案,尽管它并不会带来真正的性能提升(因为它内部仍然是逐个处理元素)。对于更复杂的情况,您可能需要考虑使用Pandas等其他库,或者重新思考问题的表述方式以更好地利用NumPy的向量化操作。如果您坚持要使用NumPy并且不使用for循环,那么可能需要考虑使用NumPy的高级功能,如广播和掩码操作,但这可能需要对问题进行一些重新表述或简化。

2023-12-30 01:21:58 516

原创 代码错误梳理

代码调试

2023-12-05 21:12:23 406

原创 偏度系数和峰度系数——三/四阶中心矩

是指一组数据的第三阶矩与均值的立方之差,用于衡量数据的偏斜程度。计算三阶中心矩的公式为:其中,xi是数据中的每一个值,μ是数据的均值,n是数据的数量。例如,假设有一组数据:2, 4, 6, 8, 10,可以计算其三阶中心矩:计算均值:μ = (2 + 4 + 6 + 8 + 10) / 5 = 6计算每个值与均值的差的立方:(2 - 6)^3 = -64, (4 - 6)^3 = -8, (6 - 6)^3 = 0, (8 - 6)^3 = 8, (10 - 6)^3 = 64。

2023-09-22 19:51:55 10278

原创 字典学习.特征shapelet

是机器学习和信号处理中使用的一种技术,用于将数据表示为所学字典中基元素的线性组合。其目标是找到一个字典,该字典可以用最少的基元有效地表示数据。这种方法尤其适用于去噪、压缩和特征提取等任务。字典学习的目标,就是提取事物最本质的特征(类似于字典当中的字或词语)。如果我们能都获取这本包括最本质的特征的字典,那我们就掌握了这个事物的最本质的内涵。换言之,字典学习将我们的到的对于物体的信息降维,减少了该物体一些无关紧要信息对我们定义这个物体的干扰。在MATLAB中,可以使用K-SVD工具箱来实现该算法。

2023-07-13 15:52:37 283

原创 《Deep learning for time series classification a review》基于深度学习的时间序列分类综述

TSC目前最先进的DNN是什么?当前的DNN方法是否达到TSC的最先进性能并且不如HIVECOTE复杂?哪种类型的DNN架构最适合TSC任务?随机初始化如何影响深度学习分类器的性能?最后:是否可以避免DNN的黑盒效应以提供可解释性?我们的实验表明,不仅DNN能够明显优于NN-DTW,而且 使用深度残差网络架构也能够获得与COTE和HIVE-COTE没有显着差异的结果(He等,2016;Wang等,2017b)。最后,我们分析了差的随机初始化如何对DNN的性能产生重大影响。

2023-07-10 19:32:19 427

原创 质心centroid/geomtry/loss/geomlss/keops/POT

Question :现有100个长度为40的时间序列,需要根据它们拟合出1个新的时间序列,让他具有代表性。一般是通过质心计算,请问有哪些常用方法,比如geomlss或keops或pot,请给出3个示例,并说明它们各自的优劣, Respond in Simplified ChineseAnswer :在时间序列数据中,有一些常用的方法可以计算质心,从而得到一个代表性的时间序列。

2023-07-01 21:57:34 176

原创 损失函数.梯度下降

代价函数和损失函数是机器学习中常用的两个概念,它们的定义、区别和联系如下:定义:常用的损失函数有以下几种:梯度下降是一种常用的优化算法,用于最小化代价函数或损失函数。它通过迭代地调整模型参数的值,以找到使代价函数或损失函数最小化的最优参数。梯度下降的基本思想是沿着代价函数或损失函数的负梯度方向更新参数。梯度是代价函数或损失函数对于参数的偏导数,表示函数在当前参数值处的变化率。通过不断地向着梯度的反方向更新参数,梯度下降算法可以逐渐接近代价函数或损失函数的最小值。梯度下降与损失函数的关系密切。在机器学习中

2023-06-29 16:55:04 562 1

原创 PyTorch之torch.broadcast_tensors

是 PyTorch 中的一个函数,可以将多个张量广播到相同的形状。下面我们通过一个简单的示例来说明它的运算流程和使用过程中的注意事项。函数将这两个张量广播到相同的形状,最终得到的形状为。在这个示例中,我们创建了两个张量。

2023-06-21 09:10:22 650

原创 零碎记录zsbd

pycharm运行选中代码部分:Alt+shift+e。

2023-06-20 01:16:51 86

原创 将给定的代码改写为PyTorch代码

cdist 替换为 PyTorch 中的相应距离函数,如 torch.cdist、torch.nn.functional.pairwise_distance 或 torch.nn.PairwiseDistance。将循环迭代替换为使用PyTorch的操作,如使用 torch.arange 或 torch.repeat 生成索引并进行逐元素操作。将数据和模型移动到GPU上,如 tensor.to(‘cuda’) 或 model.to(‘cuda’)numpy.argmin 替换为 torch.argmin。

2023-06-17 09:56:46 182

原创 在pycharm中安装pytorch

已有python运行环境3.10,并长期使用pycharm,现有需求深度学习,遂即更新显卡4070,并且配置深度学习环境。显卡支持最新的CUDA12.1,但先看到了关于:tensorflow-gpu-2.10版本之后,就不能在windows进行本地的GPU运算,还需要复杂的配置,所以。(注:此时已然看到了pytorch最新版可以用CUDA11.8,但之前学习训练都是用的tf-cpu熟练了。

2023-06-15 03:58:00 5844

原创 装饰器之@tf.custom_gradient

装饰器(Decorator)是 Python 中的一种高级语法,它可以动态地修改函数或类的功能。在 TensorFlow 中,我们通常使用装饰器来定义自定义梯度函数、自定义损失函数、自定义层等。装饰器用于定义自定义梯度函数,它可以让我们更灵活地定义梯度计算方式,以适应不同的模型和任务需求。:@tf.custom_gradient 是一个装饰器,那么,什么时候要用装饰器?函数中,我们可以在函数调用前后添加一些额外的操作。,它接受一个函数作为输入,并返回一个新的函数。在上面的代码中,我们定义了一个装饰器。

2023-06-14 08:57:36 277

原创 时间序列数据预处理:归一化和标准化等方法

归一化是对原始范围内的数据进行重新缩放,以使所有值都在0和1的范围内。当您的时间序列数据具有不同比例的输入值时,归一化可能是有用的,甚至在某些机器学习算法中也是必需的。对于算法,例如k-最近邻,它使用距离计算和线性回归和人工神经网络可能需要归一化。重量输入值。标准化要求您知道或能够准确估计最小和最大可观察值。您可以从可用数据中估算这些值。如果您的时间序列趋势向上或向下,估计这些预期值可能会很困难,并且规范化可能不是用于解决问题的最佳方法。

2023-06-08 13:06:38 8491

原创 树算法:(树模型),XGBoost/XGB,LightGBM/LGB

是一类基于决策树的机器学习算法,它们使用树状结构来进行建模和预测。树算法将输入数据逐步分割成不同的子集,通过对每个子集的特征进行判断和分割来生成决策树模型。是一种以树状结构表示的预测模型,它由节点和边组成。树的每个内部节点表示一个特征或属性,而每个叶子节点表示一个预测结果或类别。通过沿着树的路径从根节点到叶子节点进行判断和决策,决策树模型可以对新的输入数据进行分类或回归预测。

2023-06-05 23:46:10 1049

原创 时间序列:Facebook→Prophet→NeuralProphet

Prophet是由Facebook开发的一种开源的时间序列预测模型。它基于加法模型,将时间序列数据拆分为趋势、季节性和假日效应,并利用回归方法对这些组成部分进行建模。Prophet具有以下特点:灵活性:Prophet可以处理具有多种时间尺度和季节性模式的时间序列数据,包括年度、季度、月度和日度模式。它能够自动检测和适应不同的季节性模式,并且可以处理缺失数据和异常值。可解释性:Prophet提供了对模型组成部分的解释,包括趋势、季节性和假日效应。这使得用户可以更好地理解和解释预测结果。

2023-06-05 17:46:16 967

原创 时间序列之:多步预测、长序列预测——Informer / ARIMA

多步预测是指根据已知的时间序列数据预测未来多个时间步长的值。在ARIMA模型中,可以使用预测函数进行多步预测。Informer是一种用于时间序列预测的神经网络模型,旨在解决长序列预测中的挑战,如长期依赖性和变长序列。它结合了自注意力机制、卷积神经网络和传统的循环神经网络,以提高时间序列预测的准确性和效率。Informer模型的核心思想是将输入序列分成不同的时间段,然后通过编码器-解码器结构进行建模。编码器部分使用自注意力机制和卷积层来捕捉序列内部的长期依赖关系和局部模式。

2023-06-05 16:35:49 5435 8

原创 时间序列之特征工程:动态和静态信息通过特征的方式输入模型

业界在实际做时序问题时,通常采用的手段还是(但不一定是单独模型),把相关的。比如股票代码就不再是维度上的区别,而是做成一个类别变量,输入到模型中进行训练。请给出3种方法,并给出相应的代码。

2023-06-04 21:02:09 2334 1

原创 时间序列的概率分布和数据预处理

这些分布都有各自的概率密度函数,分布函数和特定的参数。这些分布之间的差异包括其形状、平均值、方差、峰度、偏度以及尾部形态等。在实际应用中,需要根据具体问题选择合适的概率分布来分析和解决问题。

2023-05-04 00:04:19 1854

原创 时间序列聚类之损失函数DTW / soft-DTW / other

Answer :首先,DBA k-means(动态时间规整k-means)和Soft-DTW k-means(软时间规整k-means)都是用于时间序列聚类的算法。时间序列聚类是将具有相似行为的时间序列分组到一起的过程。以下是DBA k-means和Soft-DTW k-means各自的优缺点:综上所述,选择哪种时间序列聚类算法取决于您的数据集大小、数据形状和您的需求。如果您的数据集比较小,而且您需要高速的聚类算法,那么DBA k-means可能是一个不错的选择。

2023-04-26 23:57:53 4100

原创 周志华《机器学习》(西瓜书)——学习笔记

第1章 绪论1.1 引言因为我们吃过、看过很多西瓜,所以基于色泽、根蒂、敲声这几个特征我们就可以做出相当好的判断.类似的,我们从以往的学习经验知道,下足了工夫、弄清了概念、做好了作业,自然会取得好成绩.可以看出,我们能做出有效的预判?是因为我们已经积累了许多经验,而通过对经验的利用?就能对新情况做出有效的决策.机器学习所研究的主要内容,是关于在计算机上从数据中产生"模型" (model) 的算法,即"学习算法" (learning algorithm). 有了学习算法,我们把经验数据提供给它,它就能

2021-02-23 21:55:29 1413

原创 Python安装模块报错Microsoft Visual C++ 14.0 is required的解决方法,切忌安装VC,太大

安装模块时出现报错 Microsoft Visual C++ 14.0 is required,也下载安装了运行库依然还是这个错误解决:1.打开Unofficial Windows Binaries for Python Extension Packages,这里面有很多封装好的Python模块的运行环境2.找到所需要下载的模块文件对应版本进行下载。如,需要下载Pymssql,本机安装是32位的python3.6,则选择pymssql‑2.1.4.dev5‑cp36‑cp36m‑win32.whl下

2020-08-03 14:57:38 552 2

原创 北大TensorFlow2_笔记

目录第一讲:神经网络的计算过程,搭建出你的第一个神经网络模型。准备数据:采集大量“特征/标签”数据搭建网络:搭建神经网络结构(前传)优化参数:训练网络获取最佳参数(反传)应用网络:将网络封装为模型,输入未曾见过的新数据输出分类或预测结果(前传)第二讲:神经网络的优化方法掌握学习率、激活函数、损失函数和正则化的使用用Python语言写出SGD、Momentum、Adagrad、RMSProp、Adam五种反向传播优化器。第三讲:神经网络搭建八股用“六步法”,写出手写数字识别训练模型。i

2020-07-22 23:56:29 3514

原创 机器学习_TensorFlow_汇总词典

前向传播和反向传播

2020-07-22 06:17:32 211

原创 编辑 PDF 文件中的文本时出现错误“没有可用的系统字体”

编辑 PDF 文件中的文本时出现错误“没有可用的系统字体”官网帮助问题尝试在 Adobe Acrobat 中编辑 PDF 文件中的文本时,会收到以下消息:“全部或部分所选内容没有可用的系统字体。您无法添加或删除使用了当前选定字体的文本”。PDF 文件不是在当前显示此文件的计算机上创建的。解决方案使用“TouchUp 文本”工具 (Acrobat 9) 或“编辑文档文本”工具 (Acrobat 10) 来编辑文本。Acrobat 9选择“工具”>“高级编辑”>“TouchUp 文

2020-07-22 03:03:47 6749

转载 批量去除pdf水印

本文解决问题:PDF文件水印怎么去除?如何去掉PDF的水印?有多少种方法?最简单的方法?PDF文件如果有水印,不少还很醒目,影响浏览,有的带有连接,一不小心就打开了浏览器,相信大家都有感触.现介绍下面的方法,用Adobe Acrobat 9 可以清除目前流行的大部分图像水印。第一步:这是必须的,不管你怎样去除,都要改动这个PDF文件,如果它设了密码,不让编辑,你就要去除它的密码,也就是破解它...

2020-02-26 17:51:07 2624

转载 JQData安装 | 最贴心教程,安装JQData全靠这篇指南

转自JQData安装 | 最贴心教程,安装JQData全靠这篇指南Hi, 各位亲爱的小伙伴们!首先,感谢聚宽小编 JQData01 给我开放了更多的数据访问资源近来听说有部分小伙伴在安装JQData时遇到了点小麻烦,导致最后没有安装成功,为了帮助小伙伴们快速成功安装JQData,小编今天来为大家排一下“雷”,希望能帮到你们哟 (・ω・) 友情提示,文末评论区有彩蛋~感谢本文小编:小胖首...

2020-02-17 14:26:00 1382

贪吃蛇游戏代码,Python

贪吃蛇游戏代码,Python,使用pygame库,可直接运行

2023-06-07

词云生成,Python

词云生成是一种可视化文本数据的技术。它涉及创建一个图形化的表示,其中包含给定文本中最常出现的单词,其大小表示其出现频率。Python代码

2023-06-07

应用随机过程 钱敏平 龚光鲁

《应用随机过程》 钱敏平 龚光鲁。随机过程类经典书籍

2010-12-27

Stability of Markovian processes I_ Criteria for discrete-time chains

Stability of Markovian processes I_ Criteria for discrete-time chains

2010-12-27

Stability of Markovian processes II_ Continuous-time processes and sampled chains

Stability of Markovian processes II_ Continuous-time processes and sampled chains

2010-12-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除