人脸识别
永恒_一瞬
欣之所遇,快然自足;所之既倦,感慨系之
展开
-
论文学习:Occlusion Robust Face Recognition Based on Mask Learning
论文地址:Occlusion Robust Face Recognition Based on Mask Learningwith Pairwise Differential Siamese Network综述 深度卷积网络作为人脸识别领域的前沿技术,存在识别模型在有部分遮挡的人脸场景效果不佳的情况。作者根据人视觉系统注意力机制,会自动忽略被遮挡的部分的性质,提出一种掩膜学习策略,来处理人...原创 2020-03-16 12:47:17 · 2298 阅读 · 10 评论 -
FaceNet论文阅读
FaceNet简介 提出一种紧欧式空间度量反映人脸相识度的映射方法,直接进行端对端学习一个从图像到欧式空间的编码方法,然后基于这个编码再做人脸识别、验证和聚类等。 人脸任务对应的技术 基于embedding提取,人脸相关任务发生改变:人脸验证 –> 两个embeddings间距离的阈值判断 人脸识别 –> K-NN分类人脸检索 –> k-means等聚类技术翻译 2018-06-29 11:06:49 · 7406 阅读 · 5 评论 -
Additive Margin Softmax for Face Verification
摘要 Additive Margin Softmax(AM-Softmax)是一个结构简单、几何可解释的目标函数,可用于深度人脸验证。该函数和特征归一化相结合,取得了很好的效果。 引言 对度量学习的损失函数进行总结:作者认为对比损失函数、三元组损失函数对样本挖掘策略非常敏感,需要耗费大量资源在策略设计上,因此现在的研究更多还是在设计更好的分类损失函数上;而对于使用广泛的翻译 2018-06-29 11:07:04 · 1001 阅读 · 0 评论 -
人脸识别 - ArcFace_ Additive Angular Margin Loss for Deep Face Recognition
摘要 本文基于权重和特征的L2归一化,提出了cos(θ+m)" role="presentation" style="position: relative;">cos(θ+m)cos(θ+m)cos(\theta+m),较cos(mθ)cos(θ)−m" role="presentation" style="positi翻译 2018-06-29 11:07:15 · 988 阅读 · 0 评论 -
人脸识别 - Face Recognition via Centralized Coordinate Learning
摘要 由于深度神经网络和大规模数据集发展,人脸识别取得了显著进步,但人脸特征的分布会影响到网络的收敛和人脸相似度的计算。本文提出CCL(centralized coordinate learning )方法使特征在超球面上分散分布,并提出一种自适应角裕量方法以提高人脸识别性能。 引言 损失函数根据关注点的不同,可分为3类:关注最终形成的人脸特征,如L2归一化、Norm翻译 2018-06-29 11:07:50 · 1183 阅读 · 0 评论 -
论文阅读 - Quality Classified Image Analysis with Application to Face Detection and Recognition
综述 作者认为当前人脸识别相关研究没有考虑图像质量对识别结果的影响,通过实验确定模型在训练和预测中图像质量越相似的结果准确性越高,因此对训练集进行质量分类,并训练出不同质量的人脸检测识别模型和质量判断模型,根据质量判断结果将人脸放到对应的模型中进行识别,取得较好的识别结果。提到的相关文献 图像质量评估综述文章: Luca Marchesotti and Rodrigue Nkoutche...翻译 2019-01-21 15:00:11 · 243 阅读 · 0 评论