自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

宅男很神经

宅男很神经

  • 博客(851)
  • 收藏
  • 关注

原创 【Python】Queue

当我们开启一个Python程序时,它在一个独立的进程中运行,并拥有一个主线程。这个线程按照代码的顺序,线性地、可预测地执行每一条指令。然而,为了应对I/O密集型任务的挑战,或是为了让GUI应用保持响应,我们常常需要引入多线程。模块允许我们创建多个线程,这些线程在同一个进程的内存空间中并发执行,共享着几乎所有的数据——全局变量、类属性、可变的对象实例等等。这种共享,既是多线程编程力量的源泉,也是其混乱与危险的根源。想象一下,一个繁忙的十字路口,如果没有交通信号灯和规则,多辆汽车(线程)试图同时穿过同一个交叉点

2025-06-12 23:51:54 616

原创 【Python】 Python 的编译执行过程

一切的起点,是我们用文本编辑器创建的文件。对于解释器来说,这首先是一个二进制的字节流。因此,它遇到的第一个问题就是:如何将这个字节流正确地解码为统一的、可理解的字符序列?Python 3的源文件默认使用编码。这是一个明智的默认选择,能够表示世界上几乎所有的字符,具有良好的兼容性。然而,为了确保最大的可移植性和避免任何潜在的歧义,最佳实践是在每个Python文件的顶部明确声明其编码格式。PEP 263 定义了编码声明的规则。这个声明必须出现在文件的前两行之内,并且必须匹配以下正则表达式:这意味着,以下声明都

2025-06-12 23:26:29 735

原创 【Python】Pyscript

在WebAssembly出现之前,让Python代码在浏览器中运行,主要有两大技术路线:将Python代码“翻译”成JavaScript,或者用JavaScript重新“实现”一个Python解释器。1.3.1 路线一:语言的“翻译官”——Python到JavaScript的转译器转译(Transpilation)指的是将一种高级语言的代码转换为另一种高级语言的代码。这个思路非常直接:既然浏览器只认识JavaScript,那我们就在代码运行之前,用一个工具把Python代码转换成功能等价的JavaScrip

2025-06-12 22:54:31 606

原创 【Python】ArcGIS蒸散发组分解析

在Python的世界中,存在着数以万计的第三方库,它们共同构成了Python强大的生态系统。然而,这也带来了“依赖地狱”的风险——项目A可能需要库X的1.0版本,而项目B则依赖其2.0版本,二者无法在同一个全局环境中和谐共存。解决这一问题的终极方案便是环境隔离。Anaconda不仅仅是一个Python的发行版,它更是一个强大的环境管理器和包管理器,是现代数据科学工作流中不可或缺的组件。1.1.1 理解Anaconda的核心价值1.1.2 获取与安装Anaconda访问官方源:打开浏览器,访问Anaconda

2025-06-12 22:15:13 304

原创 【Python】Ctypes库

在编程实践中,打通Python到C/C++的通道,并非一种炫技,而是一种刚需。其背后的驱动力主要源于以下三个方面:驱动力一:对极致性能的永恒追求(The Quest for Performance)Python的动态性和解释执行特性,使其在执行计算密集型任务时,性能远不及C/C++。著名的**全局解释器锁(Global Interpreter Lock, GIL)**更是限制了Python在多核CPU上利用线程实现计算并行的能力。当一个数据处理、科学计算或算法模拟的瓶颈出现在纯Python代码中时,最有效

2025-06-12 20:12:10 328

原创 【Python 】卷积神经网络 CNN

在数字的世界里,图像不过是像素的网格,一个由数字组成的巨大矩阵。人类的视觉系统能够毫不费力地从中解读出场景、物体、人脸和情感,这是一个堪称奇迹的过程。数十年来,人工智能领域的先驱们一直试图用算法来复现这一奇迹。在卷积神经网络(Convolutional Neural Network, CNN)横空出世之前,主流的方法是使用传统的全连接神经网络(Fully Connected Neural Network),也被称为多层感知机(Multi-Layer Perceptron, MLP),来直接处理图像数据。然而

2025-06-12 19:21:40 495

原创 【Python】深入解析 Hydra 库

在任何一个软件项目的生命周期中,无论是小型的个人脚本,还是大型的企业级分布式系统,我们都无法回避一个核心问题:如何管理配置。配置,是连接我们静态的代码逻辑与动态的运行环境之间的桥梁。它决定了我们的程序连接哪个数据库、使用哪个API密钥、以多大的批次处理数据、模型的学习率应该是多少、日志应该输出到哪里、以何种级别输出… 可以说,配置定义了程序的行为和身份。然而,正是这个无处不在、至关重要的环节,却往往成为软件工程中最混乱、最脆弱、最容易引发故障的“泥潭”。让我们跟随一个虚构但极具代表性的项目——一个用于处理用

2025-06-12 18:30:45 261

原创 【Python】Robocorp实战指南

Robocorp的诞生,正是对传统RPA模式局限性的一次正面回应。它的核心设计哲学,不是对现有模式的修补,而是一次彻底的颠覆。它认为,要构建真正企业级的自动化解决方案,就必须拥抱专业的软件开发实践,而实现这一点的最佳途径,就是将自动化建立在一个开放、强大、拥有海量开发者和成熟生态的编程语言之上。这个语言,就是Python。Robocorp的核心理念可以归结为以下几点:代码优先(Code-First),而非仅仅代码可选(Code-Optional):传统RPA平台也允许在流程中嵌入代码片段,但这通常是作为一种

2025-06-12 17:35:30 715

原创 【Python】Python 内存管理机制详解

在Python的世界里,有一句颠扑不破的真理:“一切皆对象”。无论是简单的整数、字符串,还是复杂的函数、类、模块,甚至代码本身,在CPython解释器的眼中,它们都遵循着一个统一的、规范化的结构。这个结构,就是所有Python对象的“始祖”,C语言层面的结构体。它是理解Python内存管理、垃圾回收、动态类型等一切高级主题的“罗塞塔石碑”。在CPython的源码中,这个头文件,是整个对象体系的“创世法典”。其中定义的,是所有对象在内存中存在形式的最小化表达。 中的 定义 (以Python 3.10+为例)

2025-06-12 16:45:02 696

原创 【Python】pycdc和pycds 2

在前一章中,我们如同一位语言学家,深入研究了CPython字节码这门“汇编语言”的每一个“单词”(指令)和“语法规则”(堆栈效应)。我们通过模块,获得了窥视Python代码执行本质的能力。然而,模块的输出,尽管信息量巨大,其本质上仍是线性的、顺序的。它像一本流水账,记录了虚拟机可能执行的每一步操作,但它并没有揭示这些操作之间错综复杂的逻辑关系。一个复杂的函数,充满了分支、和循环、异常处理,以及、和等中断性跳转。在的线性输出中,这些逻辑结构被“压平”成了一系列看似混乱的指令,形成了一张由“goto”语句织成的

2025-06-12 15:32:37 641

原创 【Python】pycdc和pycds

当您在终端中键入 并按下回车时,所触发的不仅仅是一个简单的文件执行动作,而是一场精妙绝伦、层层递进的内部转化之旅。这个过程将人类可读的、抽象的Python代码,转化为中央处理器(CPU)能够理解并执行的底层指令。理解这个旅程的每一个站点,是掌握Python反编译与反汇编这门艺术的绝对前提。我们将这条路径分解为四个核心阶段,并深入探讨其间发生的具体事件。阶段一:初始化与环境设置旅程的起点并非直接读取您的文件。CPython解释器启动时,首先会进行一系列复杂的初始化操作。阶段二:编译——从文本到字节码当解释器

2025-06-12 14:26:32 697

原创 【Python】Joblib

想象一下,我们正在进行一项科学研究,需要对一个复杂的函数进行多次模拟,或者对一系列图像文件进行某种耗时的处理。在Python中,我们最自然的想法,就是编写一个循环。让我们来构建一个这样的场景。假设我们有一个函数,它模拟一个纯粹的CPU密集型计算。它接收一个参数,进行一系列复杂的数学运算,然后返回结果。代码深度解析:运行与观察当你在你的机器上运行这个脚本时(),你会看到类似以下的输出:(具体时间取决于你的CPU性能,但关键在于这个时间)瓶颈分析总耗时大约是25秒。如果我们假设每个任务平均耗时2.5秒,

2025-06-11 23:38:17 261

原创 【Python】BioPython

欢迎来到分子生物学的数字新纪元。在这里,生命的蓝图——DNA、RNA和蛋白质——不再仅仅是湿实验(wet lab)中的化学实体,它们被转化为海量的、以GB乃至TB计的数字信息。要在这片数据的汪洋中航行,我们需要一艘坚固、强大且灵活的旗舰。在Python的世界里,这艘旗舰的名字,就是。本章,我们将为这趟漫长的远征奠定基石。我们不会满足于“是一个用于生物信息学的库”这样浅薄的定义。我们将深入其设计的灵魂,理解它作为一个“生态系统”的世界观。我们将探讨为何选择以一种松散耦合、模块化的方式组织其功能,以及这种设计哲

2025-06-11 22:34:11 940

原创 【Python】dpkt库

在我们踏上用 解剖网络数据包的万里长征之前,一个根本性的问题必须被回答:在 Python 的网络编程生态中,我们为何要选择 ?Python 社区并不乏处理网络数据包的工具,其中最声名显赫的莫过于 Scapy。理解 的独特定位,是掌握其精髓、发挥其最大威力的前提。这并非一个简单的工具选型问题,而是一个关乎设计哲学、性能取向和应用场景的深度思辨。1. 的核心设计哲学:快速、轻量、Pythonic 的创造者 Dug Song,同时也是一位杰出的安全专家,在设计之初就为其注入了清晰而独特的DNA。与 Scap

2025-06-11 21:28:47 668

原创 【Python】WPS

在现代数字化办公的浪潮中,WPS Office 作为一款功能强大、用户基数庞大的办公软件套件,已经深深地融入了无数企业与个人的日常工作流程中。从撰写报告、制作电子表格到设计演示文稿,WPS 的三大核心组件——文字(WPS Writer)、表格(WPS Spreadsheets)和演示(WPS Presentation)——承载着海量的信息流转与价值创造。然而,在这些日常操作的背后,隐藏着一个巨大的、尚未被充分挖掘的潜力空间:自动化。想象一下,那些每周、甚至每天都在重复的手动操作:从系统中导出数据,复制粘贴到

2025-06-11 20:44:58 930

原创 【Python】simulink与python联合仿真2

在我们“第一卷”的全部探索中,我们的 SAC 智能体扮演的是一个技艺精湛的“直觉主义者”。它通过海量的试错,直接学习到了一个从“状态(State)”到“动作(Action)”的最优映射 ( \pi(a|s) )。它“知道”在某种状态下应该做什么,但它并不能明确地“说出”或“预测”做出这个动作后,世界将会如何变化。它对世界的理解是内隐的、非结构化的,深深地编码在它那数百万个神经网络权重之中。这种方法,我们称之为无模型强化学习(Model-Free Reinforcement Learning, MFRL)。本

2025-06-11 20:13:12 613

原创 【Python】simulink与python联合仿真

Simulink 的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心 (Time-Based Core Engine):Simulink 的“心脏”是一个时间驱动的仿真引擎(Simulation Engine)。无论是定步长(Fixed-Step)还是变步长(Variable-Step)求解器,其核心逻辑都是“推进时间,计算状态

2025-06-11 19:57:21 917

原创 【Python】memory_profiler

Python,特别是其标准实现CPython,其内存管理的核心是建立在一个优雅而高效的组合机制之上的:以引用计数为主,分代垃圾回收为辅。1. 引用计数(Reference Counting):主要的内存管家这是CPython内存管理的基石。其原理极其简单:CPython中的每一个对象(一个整数、一个列表、一个自定义类的实例),其内部都维护着一个名为的计数器。这个计数器记录了当前有多少个“引用”指向这个对象。这种机制的优点是实时性和高效性。对象的内存在其不再被使用的那一刻,就会被立刻回收,不会有长时间的延迟。

2025-06-10 23:45:49 697

原创 【Python】python_jwt

在Web应用的黎明时期,身份验证的范式几乎完全由**基于服务器端会话(Session-Based Authentication)**的机制所主导。这是一个直观且在单体应用时代极其有效的模型,其工作流程如同一场精密的双人舞:凭证交换与“储物柜钥匙”的签发:用户在登录页面输入用户名和密码。这些凭证被发送到服务器。服务器验证其有效性后,会在自己的“储物间”(内存、数据库或缓存系统)里,为这位用户开辟一个专属的“储物柜”(Session对象)。这个储物柜里存放着用户的关键信息,比如用户ID、角色、权限等级等。为了让

2025-06-10 22:55:35 932

原创 【Python】 SM 系列加密算法

想象一个只有12个数字的时钟。现在是10点,4个小时后是几点?我们不会说是14点,而是会自然地回答“2点”。这个过程,在数学上就被描述为:[ (10 + 4) \pmod{12} = 14 \pmod{12} = 2 ]这里的 ,就是我们所说的模数(Modulus)。它定义了一个边界,所有运算结果一旦“越界”,就会被拉回到这个边界之内。模运算,本质上是取一个整数除以另一个整数后的余数。同余(Congruence)这个概念是模算术的核心。如果两个整数 和 ,它们除以同一个正整数 后,得到的余数相同,那

2025-06-10 22:26:32 704

原创 【Python】自然语言2

要驱动一个能够并行解析, , 的模型,我们的数据表示方法必须进行一次彻底的升维。单个的隐式元素标注已经远远不够,我们需要一种能够清晰、无歧义地描述“哪个元素是隐式的、它的答案在上下文的何处”的全新数据结构。8.4.1 数据单元的最终形态:我们需要一个新的数据类,它能够灵活地表示一个比较句中任意元素组合(E1, E2, Aspect)的显式/隐式状态,并为每一个隐式元素精确地提供其在上下文中的“答案”。8.4.2 终极预处理器:这个预处理器是整个数据工程的巅峰之作。它的职责是解析,并为中的每一个并行的指针头

2025-06-10 20:45:02 1071

原创 【Python】自然语言

传统的情感分析起点,往往是或。这种方法将文本视为一堆词的集合(Bag-of-Words),忽略了词序、语法和深层语义。其本质是将每个词视为一个独立的、正交的维度。在一个包含N个唯一词的词汇表中,"高兴"可能被表示为 ,而"开心"则被表示为 。从线性代数的角度看,这两个向量是正交的。它们的点积为0,意味着在模型看来,"高兴"和"开心"毫无关系。这便是语义鸿沟(Semantic Gap)。模型无法理解这两个词在人类语言中几乎是同义词。同样,它也无法理解"国王"与"王后"的关系,类似于"男人"与"女人"的关系。T

2025-06-10 20:07:13 578

原创 【Python】 循环神经网络(RNN)算法详解

一个标准的前馈网络,其信息流是单向的、无循环的——从输入层,流经一个或多个隐藏层,最终到达输出层。在任何一个时刻,网络对一个输入样本的处理,与其他任何样本的处理都是完全独立的(Independent)。它对当前输入的“凝视”,是毫无记忆的。原创性隐喻:“失忆的先知(The Amnesiac Oracle)”一个前馈网络,就像一位拥有强大计算能力,但却患有严重短期记忆丧失症的“失忆先知”。对于序列数据而言,这种“失忆症”是致命的。因为序列数据的核心价值,恰恰在于其上下文(Context)——即当前元素与其前后

2025-06-09 23:40:42 949

原创 【Python】Python Click库

在没有任何工具的帮助下,我们与命令行的唯一沟通方式,就是通过模块中的列表。是一个包含了所有命令行输入的原始字符串列表,其中第一个元素永远是脚本自己的名字。让我们来体验一下这种“刀耕火种”时代的开发方式。假设我们要写一个简单的脚本,它接收一个参数来指定问候的对象,以及一个参数来指定问-候的次数。编码 ():运行这个脚本,你会发现它能工作,但其脆弱性和复杂性暴露无遗:这就是的原始混沌。在这种混沌中构建复杂的CLI,无异于用泥土和茅草去建造摩天大楼。现在,让我们见证Click如何用一个简单的“咒语”,将上述的混

2025-06-09 23:08:40 567

原创 【Python】Vosk

在过去的几十年里,自动语音识别的主流技术,一直被一个强大而复杂的模型所统治——隐马尔可夫模型-高斯混合模型(HMM-GMM)。我们可以用一个原创性的类比来理解它的工作哲学。HMM-GMM的工作哲学:“精密的音素流水线”想象一下,语音识别是一个巨大的、精密的钟表工厂,其目标是将一连串的“齿轮震动声”(音频特征)组装成一块能显示正确“时间”(文字)的成品手表。第一站:声学模型车间 (Acoustic Model - GMM)第二站:发音词典车间 (Pronunciation Lexicon)第三站:语言模型车间

2025-06-09 22:35:15 782

原创 【Python】VAD

在数字信号处理的广袤世界里,语音活动检测(VAD)是最基础、最核心,却也最常被低估的任务之一。它看似简单——不就是判断一段音频里有没有人说话吗?——但这个简单的“是”或“否”的背后,却是一个连接着物理声学、数字信号处理、统计模式识别乃至现代深度学习的复杂技术体系。一个高效、鲁棒的VAD系统,是构建几乎所有高级语音应用(如自动语音识别ASR、声纹识别、智能客服、会议转写)的基石。没有它,后续的系统将被海量的、无意义的静默或噪声数据所淹没,导致计算资源的巨大浪费和核心算法性能的急剧下降。要让计算机处理声音,我们

2025-06-09 21:33:57 1008

原创 【Python】python-pptx

要真正精通 ,就必须跳出 API 的表层,深入其操作的本质——Office Open XML (OOXML) 格式。任何一个 文件,其核心都是一个遵循特定规范的 ZIP 压缩包,里面包含了定义演示文稿结构、内容、格式和关系的 XML 文件。 的所有操作,最终都会被翻译成对这些 XML 文件的读写和修改。本章将以前所未有的深度,带您解构这个 XML 世界,为您掌握 打下最坚实的理论基础。一个看似简单的 文件,实际上是一个结构化的文件系统。我们可以通过编程的方式或者手动修改后缀名为 来探索它的内部。这种

2025-06-09 20:01:32 609

原创 【Python】Haystack2

在构建和优化 RAG(检索增强生成)系统时,仅仅凭直觉或少数几个测试用例来判断其性能是远远不够的。为了系统地改进 RAG 流程,我们必须能够客观、量化地评估其各个组件的性能,特别是核心的检索器(Retriever)。检索器负责从海量文档中召回与用户查询最相关的上下文,其性能直接决定了后续 LLM 生成答案的质量和准确性。2.6.1 为什么需要评估检索器?对检索器进行严格的性能评估是至关重要的,原因如下:2.6.2 评估基础:相关性标注与测试集构建所有检索评估的基础都是相关性标注(Relevance Labe

2025-06-08 23:51:16 636

原创 【Python 】Haystack

大语言模型,如 OpenAI 的 GPT 系列、Google 的 PaLM 2/Gemini、Meta 的 Llama 系列以及 Anthropic 的 Claude,是基于海量文本数据(通常是万亿级别甚至更多的数据量)通过深度学习技术训练出来的巨型神经网络。它们的核心能力在于预测下一个词元(token),这使其能够执行一系列令人惊叹的语言任务。文本生成(Text Generation):语言理解(Language Understanding):多模态处理(Multimodal Processing):推理

2025-06-08 23:40:05 1015

原创 【Python 】Unity

自诞生以来,C# 语言就如同血液一般,流淌在Unity引擎的每一个角落。它强大、高效、类型安全,是构建游戏运行时(Runtime)逻辑的无可争议的王者。对于编辑器扩展开发而言,Unity同样提供了丰富的C# API,让开发者能够创建自定义的检视面板(Inspector)、编辑器窗口(Editor Window)、场景小工具(Gizmos)以及自动化处理流程。长久以来,这条纯C#的开发路径是所有Unity开发者所熟悉和依赖的唯一范式。然而,随着游戏开发的复杂度日益提升,项目规模不断扩大,内容生产流程变得愈发盘

2025-06-08 23:09:35 733

原创 【Python】Python设计模式

Python语言本身的设计,就已经蕴含了许多设计模式的思想。在我们学习具体模式之前,认识到这些语言层面的“内建模式”至关重要,因为它们往往是解决特定问题的首选方案。装饰器 (Decorators): 这是对经典装饰器模式 (Decorator Pattern) 和 代理模式 (Proxy Pattern) 的直接语法级支持。它允许我们以一种声明式、非侵入的方式,为函数或类附加额外的职责,如日志记录、性能测试、事务处理、权限校验等。上下文管理器 (Context Managers): 语句和、方法,是资源管理

2025-06-08 21:46:41 725

原创 Python微分方程可视化——斜率场、振动系统与生态模型

在微分方程的世界里,一个方程,如 ( \frac{dy}{dx} = f(x, y) ),不仅仅是一个抽象的数学表达式。它是一个宣言,描述了在 (xy) 平面上的每一个点 ((x, y)),一个解曲线经过该点时必须拥有的瞬时斜率。斜率场(Slope Field),或称为方向场(Direction Field),就是将这个宣言以图形化的方式公之于众的“布告板”。它不是解,而是所有可能解的内在约束和行为模式的可视化蓝图。理解斜率场,就是掌握了解曲线家族的“遗传密码”。传统定义将斜率场描述为在平面上每个点绘制一小

2025-06-08 20:44:31 845

原创 【Python】llama-cpp-python 库

GGUF (GPT-Generated Unified Format) 并不仅仅是一个简单的键值对(Key-Value)存储。它是一种精心设计的、面向内存映射(memory-mapping)和快速加载的二进制格式。其设计的核心思想在于,将模型的“描述信息”(元数据)和“实体数据”(张量权重)分离但又统一管理,使得加载器可以极速读取描述信息,并根据需要将权重张量直接映射到内存或显存中,从而最大化减少启动延迟和内存拷贝开销。每一个 GGUF 文件都以一个独特的“魔法数字”开头。这个数字 在 ASCII 中代表

2025-06-08 19:53:01 895

原创 【Python】二分查找

二分查找的惊人效率,并非凭空而来。它建立在一个简单、牢固、但绝不容妥协的基石之上:待查找的序列必须是有序的。这个前提,是二分查找算法的“灵魂契约”,一旦违背,整个算法的逻辑将瞬间崩塌。为了理解这一点,让我们想象一个游戏:“猜数字”。无序场景: 我从1到100之间随便想一个数字,不告诉你任何规律。你来猜。有序场景: 我还是从1到100之间想一个数字,但我告诉你:“你每猜一个数,我都会告诉你,我心中的数比你猜的‘大’还是‘小’。”这个“猜数字”游戏,完美地诠释了有序性的价值。有序性提供了一种可预测的单调关系。正

2025-06-08 00:15:49 697

原创 【Python】计数排序

为了理解计数排序的革命性,我们必须首先理解它所要颠覆的“旧秩序”的边界在哪里。这个边界,可以通过一种名为**决策树(Decision Tree)**的抽象模型来清晰地描绘。一个针对特定输入规模的比较排序算法,其整个执行过程可以被建模为一棵二叉树。一个简单的例子:对3个元素 进行排序假设输入是 。为了得到一个排好序的序列,我们需要确定这三个元素之间的大小关系。下面是对3个元素进行排序的一个可能的决策树:(这是一个示意图,实际内容会用文字描述)第一次比较: 。如果为,我们知道 在 前面。我们接下来

2025-06-07 23:37:07 835

原创 【Python】堆排序

从本质上讲,堆是一种特殊的、基于树形结构的数据结构。

2025-06-07 22:59:11 1009

原创 【Python】归并排序

一个排序算法是稳定的,如果它能保证在排序完成后,所有值相等的元素,其原始的相对顺序保持不变。

2025-06-07 22:10:58 836

原创 【Python】快速排序

“分而治之”是一种强大而普适的算法设计范式,它将一个难以直接解决的大问题,分解为两个或多个与原问题形式相同、但规模更小的子问题,然后递归地解决这些子问题。当子问题的解被求出后,再将它们合并,从而得到原问题的解。快速排序是“分而-治之”思想最经典、最纯粹的体现。它的整个生命周期,都围绕着一个核心动作展开:分割(Divide): 这是快速排序的灵魂。从待排序的数组(或子数组)中,挑选出一个元素,我们称之为**“基准”(Pivot)。然后,重新排列数组中的其他所有元素,使得所有小于基准的元素都被移动到基准的左边,

2025-06-07 21:33:46 972

原创 【Python】插入排序

插入排序最重要的、在现代软件工程中最具实际意义的应用,并非是作为一个独立的排序算法存在,而是作为更复杂、更高效的排序算法(如Timsort、Introsort)的子程序(Subroutine)或收尾工具(Finishing Tool)。

2025-06-07 21:20:58 786

原创 【Python】选择排序

我们已经探讨过如何通过在自定义类中实现富比较方法(如__lt__)来让选择排序处理复杂对象。然而,这种方法有一个显著的局限性:它要求我们必须能够修改类的源代码。如果我们正在处理的是一个来自第三方库的类,或者我们希望根据不同的、临时的业务逻辑对同一个对象列表进行多种方式的排序(例如,有时按年龄排序,有时按薪水排序),那么修改类本身就变得不可行或不优雅。key函数和(历史上的)cmp函数。将这些机制集成到我们的选择排序实现中,是将其从一个只能处理简单数值的“玩具”提升为一个通用排序工具的关键一步。

2025-06-07 21:02:23 899

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除