机器学习-线性回归模型判断标准

回归模型的判断标准一般有三种: MSE(误差平方和的均值,又称均方差),误差越小即越趋近于0表示模型的效果也就是对数据的拟合性越好。 m是指m个样本,i指的是向量y第i个维度的值 RMSE(均方差的算术平方根), 作用与MSE相同 R^2,取值范...

2019-05-19 19:24:01

阅读数 20

评论数 0

机器学习-线性回归-过拟合问题

一、线性回归的拟合情况 欠拟合:模型在训练过程中,模型在训练集和测试集中的表现差,即模型的泛化能力弱。 过拟合:模型在训练过程中,模型在训练集上变现非常好但在测试集上表现差,即模型的泛化能力太强。 从左上往右下,依次第一幅图是原始样本分布,第二幅图明显过度迎合数据,...

2019-05-19 18:49:27

阅读数 21

评论数 0

机器学习-线性回归 原理详解

一、什么是线性回归 回归算法是一种有监督算法。 回归算法可以看作是用来建立“解释”变量(自变量X)和因变量(Y)之间的关系。从机器学习的角度讲,就是构建一个算法模型来做属性(X)与标签(Y)之间的映射关系,在算法的学习过程中,试图寻找一个函数使得参数的拟合性最好。 回归算法...

2019-05-15 22:45:06

阅读数 12

评论数 0

机器学习-混淆矩阵、ROC曲线和AUC图像

在监督问题中,混淆矩阵可用作模型评估,一般常见于分类问题。 基本模型如图 横向代表真实值,纵向代表预测值。真正例指预测为正实际也为正的值,假负例是预测为负实际为正的值,假正例是预测为正实际为负的值,真负例指预测为负实际为负的值。 由此引出了模型效果评估的评价指标 准确率(Accurac...

2019-04-09 22:52:27

阅读数 217

评论数 0

django annotate和aggregate

两者都是django的聚合函数 annotate的每个参数是一个annotation,参数表达式可以是简单的值、模型(或任何关联模型)上的字段的引用或聚合表达式(总和、平均值等),它们与QuerySet中的对象的相关对象进行了计算,返回的是一系列的QuerySet对象。 aggregate参数...

2019-03-12 14:55:34

阅读数 84

评论数 0

机器学习概述二

一、基本概念 1.分类     通过分类模型,将样本数据集中的样本映射到某个给定的类别中 2.聚类     通过聚类模型,将样本数据集中的样本分为几个类别,属于同一类别的样本相似性比较大 3.回归     反映了样本数据集中样本的属性值的特性,通过函数表达样本映射的关系来发现样本属性值...

2018-12-09 22:39:38

阅读数 60

评论数 0

机器学习概述一

机器学习定义 根据已有的数据,建立更加符合现实的模型,用以预测未来的趋势。 对于某给定的任务T,在合理的性能度量方案P(模型准确率)的前提下,某计算机程序可以自主学习任务T的经验E(历史数据);随着提供合适、优质、大量的经验E,该程序对于任务T的性能逐步提高。 机器学习基本概念 拟合:构建的...

2018-12-02 21:17:56

阅读数 98

评论数 0

概率论基本概念三

一.均匀分布 若随机变量X的密度函数为 则称随机变量X服从区间[a, b]上的均匀分布。记作X~U[a, b]。a和b为数轴上的最大值和最小值 均匀分布的概率背景     如果随机变量X服从区间[a,b]上的均匀分布,则随机变量X在区间[a, b]上的任意一个子区间上取值的概率与该子区...

2018-11-18 17:09:33

阅读数 80

评论数 0

概率论基本概念二

一.伯努利分布(两点分布) 进行一次伯努利实验,A是随机事件。假设:P(A)=p,P()=1-p 设X表示这次伯努利实验中事件A发生的次数.或者设 1表示事件发生,0表示事件不发生。则  X~B(1, P)   二.二项分布 如果随机变量X的分布率为   ,则称随机变量X服从参数为...

2018-11-18 11:39:43

阅读数 73

评论数 0

CGI、fastcgi、WSGI、uwsgi和uWSGI的关系

1.CGI(Common Gateway Inteface) 通用网关接口,是外部应用程序与Web服务器之间的接口标准,用来规定一个程序该如何与web服务器程序之间通信 从而可以让这个程序跑在web服务器上。 2.fastcgi fastcgi是Web服务器(ex:nginx)和语言解释...

2018-11-02 10:22:59

阅读数 235

评论数 0

概率论基本概念一

  一、联合概率 定义:表示两个事件共同发生的概率,事件A和事件B的共同概率记作P(AB), P(A,B), P(AB) 二、条件概率 定义:事件A在另外一个事件B已经发生的条件下的发生概率,表示为P(A|B)。读作“在B条件下A发生的概率”。 三、全概率公式(结果概率公式) 样本...

2018-09-27 22:17:45

阅读数 267

评论数 0

python的__getattr__、__getattribute__、__setattr__

1.__getattr__ 如果某个类定义了__getattr__,那么当该类的实例字典中找不到所要查询的属性时,便会调用该方法。 class People: def __init__(self): self.name = 'John' def __geta...

2018-09-14 21:44:41

阅读数 34

评论数 0

python3使用saml2.0协议接入SSO

SAML(Security Assertion Markup Language)是一个 XML 框架,也就是一组协议,可以用来传输安全声明。比如,两台远程机器之间要通讯,为了保证安全,我们可以采用加密等措施,也可以采用 SAML 来传输,传输的数据以 XML 形式,符合 SAML 规范,这样我们就...

2018-09-10 18:31:57

阅读数 866

评论数 3

使用django自带的加解密功能

 导入相应的库 from django.contrib.auth.hashers import make_password, check_password make_password("123456") u'pbkdf2_sha25615000MAjic...

2018-08-02 16:31:16

阅读数 380

评论数 0

django csrf工作原理

参考链接地址:https://yiyibooks.cn/xx/Django_1.11.6/ref/csrf.html 一个基于随机secret值的CSRF cookie,其它站点无法获取到。 此Cookie由CsrfViewMiddleware设置。 它和每个响应一起发送,如果请求上没有...

2018-08-01 14:55:22

阅读数 319

评论数 0

django查看执行的sql查询语句

对于一些比较复杂的查询在做优化时,通常需要查看下django底层执行的sql语句。'SELECT `db_tasks`.`id`, `db_tasks`.`create_at`, `db_tasks`.`publisher`, `db_tasks`.`service_type`, `db_task...

2018-07-09 17:58:41

阅读数 797

评论数 0

使用BeautifulSoup解析HTML

from bs4 import BeautifulSoup import requests req = requests.get('http://www.iqiyi.com/') ret = req.content.decode('utf-8') # print(ret) # 使用Beautif...

2018-07-08 15:53:48

阅读数 396

评论数 0

numpy

numpy是python用于实现数据科学计算的数据包,以矩阵为基础的数学计算模块,纯数学存储和处理大型矩阵。import numpy as np from numpy import pi data = np.arange(15).reshape(3, 5) # 返回矩阵的行和列数 print(...

2018-07-01 17:21:05

阅读数 73

评论数 0

python使用元类验证子类

元类是python比较高级的用法,简而言之,元类就是创建类的类。 而type就是一个元类,是用来创建类对象的类。 因此,要定义元类就要使其继承type类。 通常情况下,开发者在使用OOP的方式编程时,往往会用到__init__方法,即构造函数。该方法会在类初始化时运行。但是我们可以将验证的时...

2018-06-23 18:06:27

阅读数 177

评论数 0

边缘计算

原文链接:http://news.rfidworld.com.cn/2017_07/fd8ac009637554fe.html  图1、邻近计算或者边缘计算让智能更加靠近设备  边缘计算(Edge computing )是一种在物理上靠近数据生成的位置处理数据的方法,即事物和人所在的现场区域如家庭...

2018-06-20 20:20:25

阅读数 1485

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭