华裔教授发现二次方程极简解法,我默默的做了下验算

这是学习笔记的第 2173 篇文章

读完需要

5

分钟

速读仅需2分钟

在我们初中的时候,学习过经典的韦达定理来求得一元二次方程的根,这算是我们学习生涯中要死记硬背的一个公式了,而在多年后已经记不大清楚这个公式了。换句话说,这是一个被验证了跨越百年的定理,我们直接理解用就好了。

我在脑海里思考了一下整个推演的思路,基本是如下的方式,我们简称为配方法。

最近来自卡耐基梅隆大学(CMU)的研究者找到了一个简单的推导方法,这一简洁的方法是由美籍华裔数学家、奥赛国家队总教练罗博深发现的。

我认真做了下验算,奈何数学基础不够扎实,我需要认认真真的做一下验算才能够理解,我把这个过程写出来供参考。

这个验算思路会完全抛弃配方法,而是反向来进行推理,我们假设一元二次方程有两个根分别为R和S.

那么ax^2+bx+c=0 我们可以做下简化,那就是两边处于a,得到的等式就是

X^2+BX+C=0,把两个根代入,可得

R^2+BR+C=0

S^2+BS+C=0

两式相减,得到R^2-S^2=-B(R-S),简化得到

(R+S)(R-S)=-B(R-S),从而得到  R+S=-B

根据R+S=-B,我们可以得到 R=-B-S,我们把RS相乘得到

RS=(-B-S)S=-BS-S^2=-(S^2+BS) =C

以下是关键的思路,既然R,S是方程的两个根,则

(R+S)/2=-B/2

而要得到真正的根,可以使用一个未知数z

可以得到RS的乘积为:

RS=(-B/2+z)(-B/2-z)=(-B/2)^2-z^2=C

从而得到

z^2=B^2/4-C

所以真正的根为:

其实看一下这个公式,我们把经典的公式a=1换算得到的是

其实换算下来是一样的形式,不过确实很佩服这个思路。

QQ群号:763628645

QQ群二维码如下, 添加请注明:姓名+地区+职位,否则不予通过

订阅我的微信公众号“杨建荣的学习笔记”,第一时间免费收到文章更新。别忘了加星标,以免错过新推送提示。

1

   

近期热文

你可能也会对以下话题感兴趣。点击链接就可以查看。

2

   

转载热文

你可能也会对以下话题感兴趣,文章来源于转载,点击链接就可以查看。

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jeanron100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值